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This supplementary material provides additional experi-
mental results and technical details for the main paper.

A. Optimization

Our pipeline implements a two-stage reconstruction ap-
proach, including 2D-3D transformation by a 2D-3D net,
and view completion by either the Multi-view Depth Com-
pletion Net (MDCN) or the Multi-view Texture-Depth
Completion Net (MTDCN). In Figure 1 we take MDCN as
an example. We implement all of our networks in PyTorch
1.2.0.
Training 2D-3D net. We use Minibatch SGD and the
Adam optimizer [9] to train 2D-3D net, where the momen-
tum parameters are β1 = 0.5, β2 = 0.999. We train 2D-3D
net for 200 epochs with an initial learning rate of 0.0009,
and the learning rate linearly decays after 100 epochs. The
batch size is 64.

We train our networks in two stages, as shown in Fig-
ure 1. We denote the training input data (single RGB im-
ages) of 2D-3D net as X1, and test data as T1. The training
input data (object coordinate images) of MDCN is X2, and
test data is T2, which correspond to the output of 2D-3D net
given X1 or T1 as input respectively.

Let us denote f(C) as the average error ofC, like the av-
erage L1 distance to ground truth. In our case, C is a set of
object coordinate images. In general, since X1 is available
during training while T1 is novel input, f(X2) is smaller
than f(T2) by a large margin, that is, the relative difference
ε = |f(X2) − f(T2)|/f(X2) is large. For example, the
training input X2 is often less noisy than the test data T2,
which results in a large ε and limits the generalizability of
MDCN. In contrast, a smaller ε leads to better generaliz-
ability.

To decrease ε, we train two 2D-3D networks separately,
a ‘good’ net (G) and a relatively ‘bad’ (B) one such thatB’s
performance on the training set, f(B(X1)), is similar toG’s
performance on the test set, f(G(T1)). In this way, X2 =
B(X1) will look similar to T2 = G(T1), which improves
the generalizability of MDCN. We control the number of
training samples to train the two networks. G is trained
with 8 random views per 3D object, while B is trained with

Figure 1: Two-stage Training.

only 1 for each. Note that we trained our net on both a
category-specific task and a multiple-category task, hence
we obtained 4 networks in total, 2 for each task.
Training multi-view completion net. Different from the
training of 2D-3D net, we only need to train one view com-
pletion net for both MTDCN and MDCN.

Since MTDCN and MDCN have a similar network struc-
ture as 2D-3D net, we use the same optimizer setup. For
MDCN, the initial learning rate is 0.0012, and the batch size
is 128. For MTDCN, the learning rate is 0.0008, and the
batch size is 48. Note that in our network, we concatenate
all the 8 views of a 3D object into one image whose size is
2048 × 256, so that we do not need to store a shape mem-
ory or shape descriptor for each object mentioned in [7],
because they are generated on the fly on one single GPU,
which makes the pipeline more efficient than [7].

B. More Experimental Results and Details

Comparisons with AtlasNet [6] on single view recon-
struction. AtlasNet is a mesh based reconstruction method,
which learns to generate the surface of 3D shapes. We fol-
low the same setting as AtlasNet and provide the recon-
struction results in Table 1, where the results of AtlasNet-
25 are reported in [6] and CD is calculated on 1024 points.
A qualitative comparison on single view reconstruction is
shown in Figure 2.



Model mean air. ben. cab. car cha. dis. lam. lou. rif. sof. tab. tel. ves.
AtlasNet 5.11 2.54 3.91 5.39 4.18 6.77 6.71 7.24 8.18 1.63 6.76 4.35 3.91 4.91

Ours-Sd+t 4.44 4.11 3.99 5.67 4.12 4.07 4.74 6.26 6.72 4.73 4.64 4.08 3.76 4.15

Table 1: Comparisons with AtlasNet on single view reconstruction on ShapeNet. The CD reported is multiplied by 100.

Figure 2: Ours v.s. AtlasNet [6].

Qualitative comparisons with RenGe [17] on single view
reconstruction. Besides the quantitative comparisons with
RenGe in Table 9 on the manuscript, we also provide qual-
itative reconstructions on real images of Pix3D dataset [13]
in Figure 3, where we show the reconstruction results of ob-
jects from three unseen categories, desks, beds and tables.
For each real image from Pix3D, we mask the background
and extract the objects of interest using the provided infor-
mation by Pix3D for the reconstructions of both our method
and GenRe. Note that the networks of ours and GenRe were
trained on ShapeNet [3] cars, chairs, and airplanes.
Qualitative results of novel car objects from ShapeNet.
Among the 13 seen categories from ShapeNet [3], car ob-
jects generally have more distinct textures. Here we show
more qualitative completions of cars in Figure 4, and com-
pare against 3D-R2N2 [4], PSGN [5] and 3D-LMNet [12].
We can generate denser point clouds with reasonable tex-
tures given inputs with different colors or shapes. It should
be mentioned that for the first car object, our method Sd+t

generates the correct shape, while other methods fail.
Chamfer Distance (CD) on dense point clouds. We also
report the results of taking dense point clouds as ground
truth in Table 2. Each ground truth point cloud has 40K
points. Our method is the best on both dense and sparse
ground truth point clouds (shown in Table 5 of the main
paper), compared with existing methods (e.g., PSGN [5],
3D-LMNet [12], OptMVS [14]).
More details about the experiments of 6D Pose esti-
mation. In Section 4.4 of the manuscript, we evaluate
the accuracy of 6D pose estimation by calculating ADD-
S [15]. ADD-S is an ambiguity-invariant pose error metric
for 6D pose estimation. Given the estimated pose [R̃|T̃ ] and
ground truth pose [R|T ], ADD-S calculates the mean dis-
tance from each 3D model point transformed by [R̃|T̃ ] to its
closest neighbor on the target model transformed by [R|T ]
[11, 15]. For object-centered reconstruction methods, we
extract the estimated pose [R̃|T̃ ] from the generated shapes
via ICP alignment [2] with the ground truth. We then use
it to transform the ground truth point cloud (P ) by [R̃|T̃ ],
which yields a shape (P ′). We calculate the ADD-S be-

tween P and P ′ on 1024 points, and scale it by a factor
100.

C. Dataset Processing

We describe how we prepare our data for network train-
ing and testing. The dataset we use is ShapeNet [3]. For
each model, we render 8 RGB images at random viewpoints
as input, and 8 depth/texture image pairs as ground truth in
MDCN training. All images have size 256× 256.
Scene setup. The camera has a fixed distance, 2.0, to the
object center, which coincides with the world origin. It al-
ways looks at the origin, and has a fixed up vector (0, 1, 0).
What vary among the viewpoints is the location of the cam-
era.
Rendering of RGB images. We use the Mitsuba renderer
[8] to render all RGB images.
Rendering of depth images. Unlike previous works [16,
10] which use a graphics engine like Blender to render
depth images, ours utilizes a projection method that is sim-
ilar to the Joint Projection introduced in Section 3.2 of the
main paper. However, different from Joint Projection which
projects partial shapes, the ground truth shape for each ob-
ject is denser, which has 100K points sampled from mesh
models, and the depth buffer is increased from 5 × 5 to
50 × 50 to alleviate collision effects. Because our projec-
tion method is mainly based on matrix calculation, it ren-
ders depth maps faster than ray tracing of graphics engines.
Rendering of object coordinate images. Following the
depth projection pipeline, we also render object coordinate
images as the ground truth to train the 2D-3D nets. First,
since in our method, the object coordinate images repre-
sent the observed parts of objects, we render a depth map
from the viewpoint of the input RGB image by projection
method. Next, we back-project the depth map into a partial
shape {Pi = [xi, yi, zi]}, which can be represented by an
object coordinate image, where RGB values are [xi, yi, zi].
It should be mentioned that the input RGB image, the inter-
mediate representation of depth map, and the object coordi-
nate image has the same pose, which means they are aligned
in pixel level.
Fusion of depth maps. We fuse the 8 completed depth
maps into a point cloud with the Joint Fusion techniques
introduced in the main paper. We also use voting algo-
rithm to remove outliers as mentioned in [7]. We repro-
ject each point of one view into the other 7 views, and if
this point falls on the shape of other views, one vote will



Figure 3: Qualitative comparisons with RenGe [17] on single view reconstruction on Pix3D dataset.

Figure 4: Reconstructions of car objects on ShapeNet dataset. ‘C’ is the generated object coordinate image, and ‘GT’ is
another view of the target object. Ours-Sdt is generated by MTDCN, Ours-Sd and Ours-Sd+t are generated by MDCN.

be added. The initial vote number for each point is 1, and
we set a vote threshold of 5 to decide whether one point
is valid or not. In addition, radius outlier removal method
is used to remove noisy points that have less than 6 neigh-
bors in a sphere of radius 0.012 around them. However, ac-
cording to our experimental results, these post-processing
methods have little effect on the quantitative results. For
example, for single-category task (shown in Table 1 on the
manuscript), the Chamfer Distance decreases from 3.09 to
3.04 after these post-processing steps.
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