Supplemental Material

In the supplemental material we also present a plot that combines on-time and total-detection rates. We also present plots obtained when we optimize to total-accuracy rather than on-time performance. Finally, we present pseudo-code for all algorithms considered in the paper.

Bivariate KL fusion

If

\[p(x) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \right) \],
(21)

\[q(x) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} s_1^2 & rs_1 s_2 \\ rs_1 s_2 & s_2^2 \end{bmatrix} \right) \] (22)

Then, (9) can be written as

\[
\text{KL} (P\|Q) = \log \left(\frac{s_1 s_2 \sqrt{1-r^2}}{\sigma_1 \sigma_2 \sqrt{1-\rho^2}} \right) + \frac{1}{2(1-r^2)} \left(\frac{(\mu_1 - m_1)^2 + (\sigma_1 - s_1)^2}{s_1^2} + \frac{(\mu_2 - m_2)^2 + (\sigma_2 - s_2)^2}{s_2^2} \right)
- 2r \left(\frac{\mu_1 - m_1)(\mu_2 - m_2) + \rho \sigma_1 \sigma_2 - rs_1 s_2}{s_1 s_2} \right) \] (23)

Plots

To facilitate overall comparison we can consider a combined reliability score defined as \textit{on-time rate} * \textit{total detection rate}. Fig. 5 demonstrate the score of proposed algorithms when each point has a different threshold to compare the best performance of each algorithm in different percentage of unknown. The score is computed as the maximum multiplication of on-times and total detected ratio over all possible thresholds. We can see that the algorithm performs well for distributions of either EVM data or SoftMax value for decisions.

![Reliability Score of proposed algorithms when the best threshold for each point is selected.](image)

![Performance of proposed policies when the threshold is selected to maximize the total accuracy validation test with 2% unknown. Compare with Fig 2 in main paper.](image)
Fig 7: Performance of proposed policies when the threshold is selected to have less than 1% early detection on validation test with 2% unknown. Compare with Fig 2 in main paper.

Fig 8: True detection percentage of proposed policies when the threshold is selected to (a) maximize true detection, (b) have 5% early detection, (c) have 1% early detection, (d) have not early detection on validation test with 2% unknown.
Algorithm 1: Simplest (baseline) automatic reliability assessment of open-set image classifiers using mean of SoftMax

Input: A batch of images, \(\mu_{\text{old}} \) state from past epoch (init 1.0)

Config: \(M \) tolerance to say image classifier is unreliable

Output: Reliability, \(\mu \) state

```plaintext
// N: number of images in the batch
x ← normalize each images to range \([-1, +1]\)
s ← CNN(x) // SoftMax, N x M
p ← max(s) // Max over row, N x 1
\( \mu \) ← mean(p)
\( \mu \) ← min\{\( \mu_{\text{old}} \), \( \mu \)\}
if \( \mu > M \) then
    return (Reliable , \( \mu \))
else
    return (Unreliable , \( \mu \))
```

Algorithm 2: Information theory method for automatic reliability assessment of open-set image classifiers using Kullback–Leibler divergence of SoftMax

Input: A batch of images, \(D_{\text{old}} \) state from past epoch (init 0.0)

Config: \((m,s) \) mean and standard deviation of SoftMax of training data set, \(\kappa \) tolerance to say image classifier is unreliable

Output: Reliability, \(D \) state

```plaintext
// N: number of images in the batch
x ← normalize each images to range \([-1, +1]\)
s ← CNN(x) // SoftMax, N x M
p ← max(s) // Max over row, N x 1
\( \mu \) ← mean(p)
\( \sigma \) ← std(p)
D ← KL(\( \mu, \sigma, m, s \)) // Equation 10
D ← max\{D_{\text{old}}, D\}
if D < \( \kappa \) then
    return (Reliable , D)
else
    return (Unreliable , D)
```

Algorithm 3: Proposed OND automatic reliability assessment using EVM open-set image classifier

Input: A batch of images, \(\varepsilon_{\text{old}} \) state from past epoch (init 0)

Config: \(\Delta \) lower bound limit of probability of EVM for image to be considered as known classes, \(\hat{\rho} \) estimation of OOD class ratio, \(\Xi \) tolerance to say image classifier is unreliable

Output: Reliability, \(\varepsilon \) state

```plaintext
// N: number of images in the batch
// M: feature size of CNN
// L: number of known classes
x ← normalize each images to range \([-1, +1]\)
f ← CNN(x) // Deep features, N x M
P ← EVM(f) // Equation 4, N x L
p ← max(P) // Max over row, N x 1
\( \nu \) ← 1 - \( \Delta \) - p // N x 1
\( \nu \) ← max\{0, \( \nu \)\} // element wise maximum
\( \mu \) ← mean(\( \nu \))
\( \zeta \) ← \( \mu - \hat{\rho}(1-\Delta) \)
\( \eta \) ← max\{0, \( \zeta \)\}
\( \varepsilon \) ← max\{\( \varepsilon_{\text{old}}, \eta \)\}
if \( \varepsilon < \Xi \) then
    return (Reliable , \( \varepsilon \))
else
    return (Unreliable , \( \varepsilon \))
```
Algorithm 4: Proposed automatic reliability assessment of open-set image classifiers using Kullback–Leibler divergence of EVM

Input: A batch of images, D_{old} state from past epoch (init 0.0)

Config: (m,s) mean and standard deviation of maximum class probability of EVM on training data set, κ tolerance to say image classifier is unreliable

Output: Reliability, D state

```plaintext
// N: number of images in the batch
// M: feature size of CNN
// L: number of known classes
x ← normalize each images to range $[-1, +1]$  
f ← CNN(x)  // Deep features, $N \times M$
P ← EVM(f)  // Equation 4, $N \times L$
p ← max(P)  // Max over row, $N \times 1$
$\mu$ ← mean ($p$)
$\sigma$ ← std ($p$)
D ← KL($\mu, \sigma, m, s$)  // Equation 10
D ← max{$D_{old}, D$}
if $D < \kappa$ then
  return (Reliable, D)
else
  return (Unreliable, D)
```

Algorithm 5: Proposed automatic reliability assessment of open-set image classifiers using bivariate Kullback–Leibler divergence of SoftMax and EVM

Input: A batch of images, D_{old} state from past epoch (init 0.0)

Config: (m_1, m_2, s_1, s_2) mean and standard deviation of maximum SoftMax and maximum class probability of EVM on training data set, κ tolerance to say image classifier is unreliable

Output: Reliability, D state

```plaintext
// N: number of images in the batch
// M: feature size of CNN
// L: number of known classes
x ← normalize each images to range $[-1, +1]$  
f, s ← CNN(x)  // Deep features and SoftMax
P ← EVM(f)  // Equation 4, $N \times L$
p_1 ← max(s)  // Max over row, $N \times 1$
p_2 ← max(P)  // Max over row, $N \times 1$
$\mu_1$ ← mean ($p_1$)
$\mu_2$ ← mean ($p_2$)
$\sigma_1$ ← std ($p_1$)
$\sigma_2$ ← std ($p_2$)
$\rho$ ← correlation ($p_1, p_2$)
// KL from equation 23
D ← KL($\mu_1, \mu_2, \sigma_1, \sigma_2, \rho, m_1, m_2, s_1, s_2, r$)
D ← max{$D_{old}, D$}
if $D < \kappa$ then
  return (Reliable, D)
else
  return (Unreliable, D)
```