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In the following, we provide an overview of the notation, more details on the methods used in the main paper along
with additional results for the presented algorithm. We further give additional plots displaying more information, such as
achieved irradiance and surface errors. This supplementary material is mainly provided for the convenience of the reader, it
has been designed to accompany the paper with the purpose of making the work more self-contained.
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1. Notation

1.0.1 Simulation

` = (`x, `y, `z)
> Position of point light (sensor is in x-y

plane).
h ∈ R Height of glass substrate.
d ∈ Rm×m Height field of 3D-printed glass.
m Height field resolution.
b ∈ Rc×n×n+ Irradiance/Brightness

of caustic sensor.
s Distance of the sensor to the substrate.
c Number of wavelengths/channels.
n Photon map resolution.
Fh,s Forward operator (simulation):

Fh,s : Rm×m → Rc×n×n+ .
Nr Number of photons for reference gen-

eration.
No Number of photons for each recon-

struction iteration.
E Operator computing the irradiance at

the receiver plane.
x ∈ R3 Position on the receiver plane.
xP ∈ R3 Position of intersection of photon P

with the receiver plane.
MP Change of basis matrix which trans-

forms the elliptical into a spherical
footprint.

K Photon splating kernel.
EP Irradiance of Photon P .
Ph,s Path tracing operator.

1.0.2 Reconstruction

bδ ∈ Rc×n×n+ Brightness with noise (data).
δ > 0 Relative noise level, i.e.

‖bδ − b‖F ≤ δ‖b‖F.
‖ · ‖F Frobenius norm.
τdis Tolerance parameter of discrepancy

principle.
τp > 0 Step size of naive approach and pixel-

based Landweber
αp > 0 Regularization parameter to enforce

sparsity in pixel basis.
S Soft-shrinkage operator.
p1 Lower physical bound of the height

field d.
p2 Upper physical bound of the height

field d.
I[p1,p2] Interval projection operator.
τw > 0 Step size of wavelet-based Landweber.
αw > 0 Regularization parameter to enforce

sparsity in wavelet basis.
W Discrete wavelet transform.
W−1 Inverse of discrete wavelet transform.
V Volume of the glass.
Vε Relative uncertainty of the volume of

the glass used for printing.
a Area of a pixel (on the glass substrate).
v Volume of reconstructed height field

divided by a.
q1 Lower bound for volume heuristic.
q2 Upper bound for volume heuristic.
j j = (j1, j2), indices of height field d.
rV Surrounding pixels in this radius are

included in volume heuristic.
d̄ Mean value.
ď Printed part of height field d.
d̊ Unprinted part of height field d.
Ň Indices corresponding to printed part.
N̊ Indices corresponding to unprinted

part.
γ Parameter to influence the growing of

the volume (for volume heuristic).



2. Methods
2.1. Derivations Regarding the Pixel-Based Landweber Approach M2

As described in the paper, we have to solve the minimization problem

min
d∈Rm×m

1

2
‖Fh,s(d)− bδ‖2F + αp‖d‖1. (1)

This can be solved with the well-known thresholded, nonlinear Landweber scheme, see, e.g., [1, 3],

d[n+1] = S
(
d[n] − τ [n]p ∇fdis,p(d[n]), τ [n]p αp

)
, (2)

Derivation of the Landweber Scheme In the following we repeat the idea of the derivation of the Landweber scheme
and introduce required notation. The question is, when zero is an element of the subdifferential of (1). First, ∂fdis,p(d) =
∂{ 12‖Fh,s(d) − bδ‖2F} = [F ′h,s(d)]∗[F (d) − bδ] (compute the subdifferential of the norm written as inner product and
change the positions using the adjoint) and second, ∂ {αp ‖d(x)‖1} = αp sign(d(x)) with

sign(d(x)) =


{−1} if d(x) < 0,

[−1, 1] if d(x) = 0,

{1} if d(x) > 0,

x ∈ Rm×m.

Note that the subdifferential of the second term coincides with the subdifferential of the absolute value function, i.e. the
set-valued signum function.

We consider 0 ∈ {[F ′h,s(d)]∗[Fh,s(d)−bδ]+αp sign(d)}, subtract [F ′h,s(d)]∗[F (d)−bδ], multiply with step size τp > 0

and add d. This results in d− τp[F ′h,s(d)]∗[Fh,s(d)− bδ] ∈ (I + τp αp sign)(d). The inverse of (I + τp αp sign), i.e., the
proximal mapping (I + τp αp sign)−1(d) is the already introduced soft-shrinkage operator with κ = τp αp. Finally, we end
up with (2).

Derivation of the Extended Landweber Scheme The derivation of the extended Landweber scheme is quite similar to
the non-extended original. In addition to (1), we have to take into account the subdifferential of δ[p1,p2](d).

To this end, the auxiliary, set-valued step function step[p1,p2] and their inverse step−1[p1,p2]
defined by

step[p1,p2]
(x) :=


{p1} if x ≤ 0,

[p1, p2] if x = 0,

{p2} if x ≥ 0,

and

step−1[p1,p2]
(x) :=


(−∞, 0] if x = p1,

{0} if x ∈ (p1, p2),

[0,∞) if x = p2,

∅ otherwise,

turn out to be useful. Of course, the element-wise application is assumed if x is a vector. Note that step[−1,1](d) =

sign(d) = ∂‖d‖1 and step−1[p1,p2]
(d) = ∂δ[p1,p2](d).

Therefore, (I + τp ∂{αp ‖ · ‖1 + δ[p1,p2](·)})(d) is the same as d+ τp αp step[−1,1](d) + step−1[p1,p2]
(d). The inverse of

this term exists and is called extended soft-shrinkage operator I[p1,p2] (S (d, τp αp)).



3. Result Details
3.1. Parameters of All Numerical Experiments

Lens-
es

Ground
truth

s
(cm)

#wave-
lengths

Noise
level

Recon.
method Fig.

Run
time
(min)

Rel.
dis.

Rel.
err. #iter τdis τp αp [p1, p2] τw αw Vε γ

Print lines with 5% noise level, see Figs. 4–9

N-N Lines 0 1 5%

M2V1 4(b) 2.95 .0504 .0648 72 1.01 .1 .002 [0, 0.3] .25 .1
M3V1 4(c) 2.77 .0505 .0658 65 1.01 .1 .0005 [0, 0.3] .1 .01 .25 .1
M1 4(d) 6.62 .0549 .1800 162 1.1 .1
M2V0 4(e) 4.72 .0600 .1086 114 1.2 .1 .002 [0, 0.3]
M3V0 4(f) 4.38 .0598 .1065 102 1.2 .1 .0005 [0, 0.3] .1 .01

Print lines with 20% noise level (in addition to the paper), see Figs. 4–9

N-N Lines 0

1

20%

M1 4(g) 1.28 .2020 .2007 31 1.01 .1
M2V1 4(h) 0.58 .1991 .1261 14 1.001 .1 .002 [0, 0.3] .25 .1
M3V1 4(i) 0.62 .1995 .1297 14 1.001 .1 .0005 [0, 0.3] .1 .01 .25 .1

3
M1 4(j) 11.82 .2019 .2028 124 1.01 .005
M2V1 4(k) 2.98 .2000 .1298 33 1.001 .005 .002 [0, 0.3] .25 .05
M3V1 4(l) 3.05 .2002 .1305 33 1.001 .005 .0005 [0, 0.3] .005 .01 .25 .05

Comparison to CD (caustic design) of Schwartzburg et al. [12], see Figs. 10 and 11

N-N

Lines 0

1 5%

M2V1 2.95 .0504 .0648 72 1.01 .1 .002 [0, 0.3] .25 .1
Lines 0.0125 CD 30.80a .0693 1.0217
A 0.0125 M2V1 2.05 .0548 .1773 34 1.1 .1 .002 [0, 0.3] .25 .1
A 0.0125 CD 31.72a .0862 .5596

Two simple lenses, see Fig. 12
L-L A 2.500 1 5% M2V1 12 8.55b .0599 .1713 108 1.2 .05 .002 [0, 0.3] .25 .1

More complex set-ups: prism and lens array (in addition to the paper), see Figs. 13–16
N-A dam. A 1.875

1 5%

M2V1 13 3.97b .0747 .2469 54 1.5 .05 .002 [0, 0.15] .25 .1
N-A dam. A c 1.875 M2V1 14 3.40b .0600 .1969 43 1.2 .05 .002 [0, 0.15] .25 .1
P-N dam. A 0.0125 M2V1 15 21.93b .0749 .2618 242 1.5 .05 .002 [0, 0.15] .25 .1
P-N dam. A c 0.0125 M2V1 16 1.85b .0993 .1885 23 2.0 .05 .002 [0, 0.15] .25 .1

Real-world sample
N-N unk.d 0 1 unk. M2V1 1.78 .1740 unk. 30 1.01 .00001 7 [0, 0.035] .25 10

Table 1: Run times, relative discrepancies, and errors as well as chosen parameters for all numerical experiments.
All reconstructions were stopped by discrepancy principle if not otherwise stated.
Legend for the lenses: First, we mention the top lens and second, the bottom lens (N: no lens, L: simple lens, P: prism, A: lens array).
Note that the simple top lens is different from the simple bottom lens as described in the experimental set-up in the paper.
In all cases of used volume heuristic, we set the radius rV to include surrounding pixels to 2.

aMixed CPU and GPU algorithm, run time not directly comparable.
bAs a consequence of the additional intersection events, we had to adapt the simulation for the reconstruction using 16 inner simulations (instead of 32)

and a splat smoothing parameter of 177 (we divide the default value of 250 by
√
2).

cInstead of initial guess for height field d = 0 we use A.
dIn this experimental set-up we consider a glass substrate of physical dimensions 12.36mm× 12.36mm× 4.08mm with a printed line of height

0.12mm, we place our light source at ` = (0 cm, 0 cm, 151.36mm)T and we use a wavelength of 0.525 µm.

3.2. Experimental Set-Ups

Unless otherwise noted, our experiments share a common set-up: The first common variable is the predefined height
field, that consists either of print lines or of the character A (and a part of a ring). In brief, we speak of the lines or the A. The
lines are depicted in Fig. 1(a)/(b). The A is shown in Fig. 2. A special case is A damaged that is A with some built-in errors.
The synthetic height field of print lines was generated to deal with several problems in glass 3D printing like interruptions
in the printing line and lines of different thickness. Furthermore, the thinnest print line is a challenge for the resolution of
the height field d ∈ Rm×m with m = 128. In the case of the A, we deal with sharp edges.

The height field is thus assumed to be square and placed on a substrate of physical dimensions 5 cm× 5 cm× 0.25 cm.
We place our light source at ` = (0 cm, 0 cm, 25 cm)

T and render our reference solution with Nr ≈ 3 · 107 photons per



wavelength. Due to memory restrictions in the gradient computation we cannot reconstruct with this high number of photons,
thus we use No ≈ 8 · 106 photons per wavelength, taking care to choose the smoothing parameter [2] such that initial
differential vectors of photons keep the same length in reference generation and reconstruction phase. For metrological
reasons we have chosen typical wavelengths of a helium-neon laser, i.e., wavelengths of 0.633, 1.152 and 3.392 µm as
they have the largest gain factors, see [9]. As for the refractive index curve of the glass, we use the fused silica curve
from [4, 5, 13] since it includes the infrared and visible spectrum. Unless otherwise noted, we use one wavelength of
0.633 µm.

Unless otherwise stated, the experiments do not include additional optical elements (see Tab. 1 for variations with simple
lenses, prism or lens array). The corresponding caustic images of all three wavelengths in the case of the print lines are
shown in Fig. 1(c). The caustic image of one wavelength in the case of the A is depicted in Fig. 2(c).

By default, Gaussian noise with noise level δ of 5% was employed to simulate data. Deviating from this, we have also
examples with 20%, see Tab. 1.

However, we perturb the data with slightly less than 5% or 20% as the forward operator used for reconstruction process
has an intrinsic error of approximately 0.4% in the case of one wavelength and 0.6% in the case of three wavelengths,
meaning that only the difference to the desired noise level will be added.
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(a) Predefined obstacle, sur-
face.

(b) Predefined obstacle, 2D.
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(c) Reference simulation of caustic images for three wavelengths.

Figure 1: Simulation results of lines. Surface (a) and 2D (b) views of the predefined obstacle (height field d of printed glass on top of
glass substrate). The simulation of the corresponding caustic images, i.e., irradiance at sensor, for the three wavelengths of 0.633, 1.152
and 3.392 µm are depicted in (c).
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(c) Reference simulation of
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Figure 2: Simulation results of A. Surface (a) and 2D (b) views of the predefined obstacle (height field d of printed glass on top of glass
substrate). The simulation of the corresponding caustic image, i.e., irradiance at sensor, for the wavelength of 0.633 µm is depicted in (c).

3.3. Discussion of Parameters

We discuss the parameters based on the numerical examples of the print lines with 5% and 20% noise level without any
additional optical elements. However, these parameters are suitable for most other cases, cf. Tab. 1.

It is known that the naive approach as well as the Landweber scheme are sensitive to the choice of their step size: they



are very slow if the value is chosen too small; the reconstruction fails completely if the value is chosen too big. After several
experiments, the value of τp = 0.1 was deemed best for the naive approach as well as the pixel-based Landweber in the
case of one wavelength. We use τw = τp = 0.1 for the wavelet-based Landweber in the case of one wavelength. For three
wavelengths we adapt the step sizes to τp = 0.005 and τw = 0.005.

We set the tolerance parameter τdis to 1.1 for 5% noise level and to 1.01 for 20% noise level if we employ the naive
approach. If the pixel-based or wavelet-based Landweber is used and the noise level is 5%, we set τdis to 1.01 in the case of
enabled volume heuristic and to 1.2 in the disabled case. If Landweber with volume heuristic is used in the case of 20%
noise level, we set the tolerance parameter τdis to 1.001.

The regularization parameters were determined manually. A rule of thumb is to set them as high as possible such that the
discrepancy principle is fulfilled. We set them independently of the noise level. The regularization parameter αp for the
sparsity in the pixel basis is set to 0.002 if the pixel-based Landweber is employed. The corresponding parameter in the case
of wavelet-based Landweber is αp = 0.0005 and for the regularization parameter for the sparsity in a wavelet basis we use
αw = 0.01. As already mentioned we decided on Daubechies 3 wavelets. In both cases of Landweber-based reconstruction
the physical bounds are enforced between p1 = 0 and p2 = 0.3.

If the volume heuristic is used, we assume to know the volume of the deposited material with a relative uncertainty of
Vε = 0.25 in all cases. To influence the growing we set γ = 0.1 in the case of one wavelength. For three wavelengths a
slower growth turned out to be advantageous, γ = 0.05. In all cases we set the radius rV to include surrounding pixels to 2.



4. Additional Results
4.1. Print Lines with 5% and 20% Noise Level

Based on the experimental set-up described above, we consider three experimental set-ups for the print lines in this
section and call them W1N05, W1N20 and W3N20: In the case of W1N05, we use one wavelength of 0.633 µm. Gaussian
noise with noise level δ of 5% was employed to simulate data in this case. (This default case was already considered in the
main paper.) In the case of W1N20, we also use a wavelength of 0.633 µm with δ = 20%. In the case of W3N20, we use all
three wavelengths. Again, 20% Gaussian noise was used in the data simulation.

4.1.1 20% Noise Level

All reconstruction results to 20% noise level are in Fig. 4. For a better comparison, the colorbar limits are the same as is in
the corresponding figure in the paper and we repeat the results to 5% noise level.

As expected, the reconstruction with the naive approach differs strongly from the predefined one in all experimental
set-ups, see Fig. 4(g)/(j). In particular, this is visible in the slices, see Fig. 3(g)/(j). In addition, this method needs the longest
run time in all experimental set-ups. A special characteristic is that the reconstructed form is partly below the substrate
height of 0.1.

Both pixel-based as well as wavelet-based Landweber, see second and third column of Figs. 4 and 3, deal with that
problem as they take into account physical bounds and deliver sensible reconstructions as they enforce sparsity. In addition,
the area-based physical bounds ensure a mostly artifact-free background. In our experiments it is not crucial whether we
employ a pixel-based or wavelet-based scheme.

We show the robustness of the used pixel-based and wavelet-based Landweber (with all described extensions) in
Figs. 4(h)/(i) and 3(h)/(i). We receive a sensible reconstruction in the case of 20% noise level with one wavelength. It takes
less than a minute to reach a reconstruction error of 13%.

In the case of three wavelengths (with 20% noise level), the reconstruction benefits from additional information and
shows approaches of the thinnest print line, see Figs. 4(k)/(l) and 3(k)/(l). In that case pixel-based and wavelet-based
Landweber can outperform the naive approach very clearly in terms of run time by factor four. The reconstruction error is
better anyway, i.e. 13%, which is in the order of magnitude of the experiment with one wavelength (and 20% noise level).
Therefore, we are confident that our reconstruction algorithm is able to deal with real-world data as well.
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(j) W3N20 with M1.
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Figure 3: Center slices of the predefined height field (blue solid) and the reconstructions (red dashed) to compare the reconstruction
methods. The layout is the same as in Fig. 4. One unit on the x-Axis corresponds to 2.5 cm.
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(j) W3N20 with M1.

0.06

0.09

0.12

0.15

0.18

(k) W3N20 with M2V1.

0.06

0.09

0.12

0.15

0.18

(l) W3N20 with M3V1.

Figure 4: 2D Comparison of reconstruction methods in the case of one (W1) and three wavelengths (W3), see (b)–(i) and (j)–(l),
for simulated data with 5% (N05) and 20% noise level (N20), see (b)–(f) and (g)–(l). Apart from the predefined height field (a) the
reconstructions are depicted with the naive approach (M1) in the first column, the pixel-based Landweber (M2) in the second one, and
the wavelet-based Landweber (M3) in the third one. We demonstrate the effect of the proposed volume heuristic (V1) in (b) and (c) in
comparison to disabling (V0) in (e) and (f). In all other cases of the Landweber schemes we employ the volume heuristic. Note that all
colorbars have the same limits. The corresponding center slices of the predefined height field and the reconstructions are depicted in
Fig. 3 in the same layout. All reconstructions were stopped by discrepancy principle. The run times, relative discrepancies, and relative
errors as well as the chosen parameters are indicated in Tab. 1.
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Figure 5: Reconstruction of the obstacle (height field d on top of a substrate with height h) with different methods as surface plot. Layout
as in Fig. 4. Note that all colorbars have the same limits.
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Figure 6: Error of reconstruction (predefined and reconstructed obstacle) as 2D plot. Layout as in Fig. 4. Note that all colorbars except
the first have the same limits.
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Figure 7: Error of reconstruction (predefined and reconstructed obstacle) as surface plot. Layout as in Fig. 4. Note that all colorbars
except the first have the same limits.
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Figure 8: Predicted caustic (from reconstruction results) from different methods in comparison to reference caustic in 2D plots. Layout as
in Fig. 4. Note that all colorbars have the same limits and multi-spectral images have been mapped to RGB channels.
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Figure 9: Error of predicted caustic (predicted and reference caustic) of different methods as surface plot. Layout as in Fig. 4. Note that
all colorbars except the first have the same limits and multi-spectral images have been mapped to RGB channels.



4.2. Comparison to CD (caustic design) of Schwartzburg et al. [12]

In this section we will provide additional details for our implementation of Schwartzburg et al. [12] including the utilized
parameters and how we compare to our method: Since we were unable to find an official baseline implementation of
Schwartzburg’s method, we chose to reimplement it, based on the description in the paper. Our implementation differs
in some aspects from the original and some parameters had to be hand-tuned again, both of which we will detail in the
following:

For computation of the optimal transport map, we use the original implementation of [6, 7] and its Python wrapper [8].
Our highest resolution in the multiscale hierarchy consists of 215 sites. As in the original we divide the number of points by
4 for each level of the hierarchy. We further use 100 iterations of Lloyds sampling to smooth the resulting site positions. In
the multiscale optimal transport computation we pass the objective and gradient from [8] into the L-BFGS-B optimizer
from [14] and use predefined convergence criteria.

In the target optimization step we assume the same light source, screen position and single wavelength to achieve
comparability with our method. We compute the target mesh with 2872 vertices. In contrast to the original paper, we
implement the energy function for target optimization in PyTorch [10, 11] to use its autodifferentiation and GPU-acceleration
capabilities. As such we use the L-BFGS optimizer from PyTorch. We stop the optimization, when the losses plateau
(i.e. ‖fk+1 − fk‖ ≤ 10−5) or when the target shape does not change anymore (i.e. ‖xk+1 − xk‖ ≤ 10−5). Regarding the
outer iteration in the target optimization step in which a new target normal field is computed, we use a similar convergence
criterion: We stop, when the target shape does not change significantly, i.e. ‖xk+1 − xk‖ ≤ 10−5.

Finally we set the barrier energy to penalize vertices, which fall under the initial substrate height, as we are only interested
in solutions arising from the addition as material. We set the weighting parameters as follows: the weight for the integration
energy (Eint) is set to 1 as well as the weight for the barrier energy (Ebar). The direction energy (Edir) and regularization
energy (Ebar) however, are weighted with 105. We do not use the flux energy (Eflux) in our examples.

The target optimization gives a result as a mesh with vertices, which may vary not only in height. To compare this result
to our height field representation we interpolate a height field from the resulting mesh at our GT height field resolution. We
have found that the resulting meshes are sufficiently regular for the feature size under consideration here.
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Figure 10: Additional plots for caustic design [12] reconstructions of the predefined obstacle on the lines (top) and A (bottom) example.
Note that the obstacles share the same colorbar.
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Figure 11: Additional plots for caustic design [12] reconstructions of the resulting caustic image on the lines (top) and A (bottom)
example. Note that the caustic images share the same colorbar.



4.3. Complex Set-Up: Two Simple Lenses
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Figure 12: Reconstruction of an obstacle (consisting of A on top of a substrate) between two simple lenses with our method M2V1.



4.4. More Complex Set-Ups: Prism and Lens Array

We want to consider the limits of our reconstruction method M2V1 with experimental set-ups consisting of a lens array
or a prism. In both cases the 3D printer should print the A obstacle. However, we assume that a damaged version is printed.
So, the predefined obstacle is a damaged A obstacle. First, we compute a reconstruction as in the numerical experiments
before with an initial guess of the height field d = 0, see Figs. 13 and 15. Second, we start as initial guess with the height
field of the A without damage, see Figs. 14 and 16.
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Figure 13: Reconstruction of an obstacle (consisting of damaged A on top of a substrate) with our method M2V1 in the case of a lens
array as bottom optical element.
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Figure 14: Reconstruction of an obstacle (consisting of damaged A on top of a substrate) with our method M2V1 in the case of a lens
array as bottom optical element. As initial guess we employ A.
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Figure 15: Reconstruction of an obstacle (consisting of damaged A on top of a substrate) with our method M2V1 in the case of a prism as
top optical element.



0.12

0.16

0.20

0.24

(a) Predefined obstacle, 2D.

0.12

0.16

0.20

0.24

(b) Reconstructed obstacle, 2D.

0.00

0.03

0.06

0.09

0.12

(c) Perturbed caustic, 2D.

0.00

0.03

0.06

0.09

0.12

(d) Predicted caustic, 2D.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

(e) Predefined and reconstructed obstacle, slice.

−0.08

0.00

0.08

(f) Error of reconstruction, 2D.

−0.050

−0.025

0.000

0.025

0.050

(g) Error of predicted caustic, 2D.

Figure 16: Reconstruction of an obstacle (consisting of damaged A on top of a substrate) with our method M2V1 in the case of a prism as
top optical element. As initial guess we employ A.
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