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1. Derivation of Poisson-Gaussian Loss Func-
tion

In self-supervised denoising, we only have access to
noisy pixels yi and not the corresponding clean pixels xi.
Similar to a generative model, we use the negative log-
likelihood of the training data as our loss function:

Li = − log p(yi) (1)

However, for denoising we are interested in learning a
model for p(xi), not p(yi). We relate p(xi) to p(yi) by
marginalizing out xi from the joint distribution:

p(yi) =

∫ ∞
−∞

p(yi, xi)dxi (2)

=

∫ ∞
−∞

p(yi|xi)p(xi)dxi (3)

In other words, we integrate p(yi, xi) = p(yi|xi)p(xi) over
all possible values of the clean pixel xi.

Here, p(yi|xi) is simply our chosen noise model. p(xi)
constitutes our prior belief about the value of xi before we
have seen an observation of yi. We do not know what form
the prior should take; it is essentially up to us to choose.
Usually we use the conjugate prior of the noise model be-
cause this makes the integral tractable.

Our loss function term for pixel i will then be

Li = − log

∫ ∞
−∞

p(yi|xi)p(xi)dxi (4)

1.1. Gaussian noise

For zero-centered Gaussian noise, p(yi|xi) is the normal
distribution centered at xi with variance equal to σ2

n. We
choose p(xi) to be the normal distribution as well. Here

we have the network output the parameters of the Gaussian,
mean µi and std. dev. σi.

The marginalized pdf is derived as follows:

p(yi) =

∫ ∞
−∞

p(yi|xi)p(xi)dxi (5)

=

∫ ∞
−∞
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=
1√

2π(σ2
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which we recognize as a Gaussian with mean µi and vari-
ance σ2

i + σ2
n.

The loss function is then

Li = − log p(yi) (8)

= − log

(
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=
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Dropping the constant terms we have

Li =
(yi − µi)

2

(σ2
n + σ2

i )
+ log(σ2

n + σ2
i ). (11)

1.2. Poisson noise

For high enough values of Xi, the Poisson distribution
P(λ) can be approximated by a Gaussian N (λ, λ) with
mean and variance equal to λ. Using this idea, Laine et



al. [2] adapt the above formulation for Gaussian noise to
the Poisson noise case. However, they introduce an approx-
imation in order to evaluate the integral.

Let a be the scaling factor s.t. y/a ∼ P(x/a) where x
and y are in the range [0 1]. The noise model using a normal
approximation is y = a(x/a+N(0, x/a)) = x+N(0, ax).
The proper joint distribution for this model is thus

p(yi)p(xi) =
1√

2π(axi)
exp
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)
·
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However, Laine et al. replace the variance of the noise dis-
tribution with aµi. This makes the integral tractable. They
argue that this approximation is okay if σ2

i is small.

P (yi) ≈
∫ ∞
−∞
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=
1√
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which we recognize as a Gaussian with mean µi and vari-
ance σ2

i + aµi.
Following the derivation above, our loss function is

Li =
(yi − µi)

2

(aµi + σ2
i )

+ log(aµi + σ2
i ). (15)

1.3. Poisson-Gaussian noise

Noise in microscope images is generally modeled as a
Poisson-Gaussian process. The number of photons entering
the sensor during the exposure time is assumed to follow
a Poisson distribution, and other noise components such as
the readout noise and thermal noise are captured by an ad-
ditive Gaussian term.

We can easily extend the Poisson loss function above to
Poisson-Gaussian by adding a noise variance b to the model.
Following the derivation above, our loss function is

Li =
(yi − µi)

2

(aµi + b+ σ2
i )

+ log(aµi + b+ σ2
i ). (16)

2. Posterior mean estimate

The blind-spot network ignores the actual measured
value for yi when it makes a prediction for xi. However,
yi contains extra information which can be used to improve
our estimate of xi.

Laine et al. [2] suggest to use the expected value of the
posterior:

x̂i = E[xi|yi] =
∫ ∞
−∞

p(xi|yi)xidxi

=
1

Z

∫ ∞
−∞

p(yi|xi)p(xi)xidxi

where we have applyed Baye’s rule to relate p(xi|yi) and
p(yi|xi)p(xi) up to a normalizing constant Z, where

Z =

∫ ∞
−∞

p(yi|xi)dxi. (17)

For a Gaussian with prior mean µi and variance σ2
i , and

noise variance σ2
n, we have the following result:

x̂i =
yiσ

2
i + σ2

nµi

σ2
i + σ2

n

(18)

This same formula can be used for the Poisson or Poisson-
Gaussian noise models (replacing σ2

n with aµi or aµi + b,
respectively).

3. Results
3.1. Gaussian noise

While our method is meant for denoising images with
Poisson-Gaussian noise, we also test our methods ability to
denoise pure Gaussian noise. We evaluate two variants of
our noise estimation method by comparing the estimated a,b
parameters to the ground truth parameters for every noise
level, σ ∈ {10, 20, 30, 40, 50}, of our synthetic Gaussian
noise Confocal MICE dataset. When we can make the as-
sumption that Gaussian noise is the type of noise that exists
in an image, we show that an improvement can be made in
denoising quality by making a small change to our method
to fit pure Gaussian noise parameters.

Table 1 provides results obtained on our synthetic dataset
in which Estimated represents a,b parameters obtained us-
ing our Poisson-Gaussian noise fitting, while G-Estimated
represents our estimated a,b parameters using our Gaussian
noise fitting method which can be accomplished by simply
fixing a = 0 for our Poisson-Gaussian noise fitting tech-
nique. While our Poisson-Gaussian noise fitting technique
typically provides a better estimate of the b parameter than
the Gaussian noise fitting method, our Poisson-Gaussian
noise fitting obtains an incorrect estimate of a unlike our
Gaussian noise fitting. This worse estimate of a contributes
to an overall worse denoising quality than the quality ob-
tained by estimating the noise parameters with Gaussian
noise fitting which is shown in Table 2. This is because
the Gaussian noise fitting parameters result in a more accu-
rate estimate of the computed noise variance due to the a
parameter being known.



3.2. Poisson noise

We perform the same denoising experiments on images
with varying levels of Poisson noise. Once again, we show
that we can improve the denoising quality by modifying our
Poisson-Gaussian noise fitting technique to fit Poisson noise
when we can make the assumption that pure Poisson noise
is present in an image. This can be done by simply fixing
b = 0 for our Poisson-Gaussian noise fitting technique.

Table 3 shows a comparison between ground truth and
estimated a,b noise parameters for every noise level, λ ∈
{10, 20, 30, 40, 50}, of our synthetic Poisson noise Confo-
cal MICE dataset. Estimated and P-Estimated represent our
estimated a,b parameters using our Poisson-Gaussian and
Poisson noise fitting techniques, respectively. While our
Poisson-Gaussian noise fitting provides decent estimates of
the a,b parameters, using the pure Poisson noise fitting can
provide almost exact estimates of both parameters. Table 3
shows that our Poisson noise fitting technique results in a
PSNR close to that obtained using the ground truth param-
eters. While the Poisson-Gaussian noise fitting results in a
worse denoising quality than the Poisson noise fitting, an
improvement in denoising quality is still obtained over the
pseudo-clean image.

3.3. Poisson-Gaussian noise

To further evaluate our bootstrapping method, we com-
pare our estimated a,b parameters to the ground truth ones
for every noise level, (λ, σ) ∈ {10, 20, 30, 40, 50} ×
{10, 20, 30, 40, 50}, of our synthetic Poisson-Gaussian
noise Confocal MICE dataset. Table 5 shows the results ob-
tained for all the Poisson-Gaussian noise levels. The ground
truth a,b parameters correspond to the (λ, σ) noise level
synthetically added to the clean images while the estimated
a and b are the parameters learned from fitting a Poisson-
Gaussian noise model using our bootstrapping technique.

We further evaluate our approach on our synthetic
dataset by comparing the PSNR obtained by our bootstrap-
ping method for all the noise level combinations. Table 6
compares the PSNR achieved by the pseudo-clean image
which is the output of the blindspot neural network, the im-
age obtained by our bootstrapping method, as well as the
image obtained when the ground truth a,b parameters are
known rather than learned.

3.4. Noise Parameter Estimation

To further study how effective our bootstrapping tech-
nique is we evaluate how the PSNR is affected by vari-
ous levels of error in our estimates of the a,b parameters.
Since the error in our estimation of the a parameter is dif-
ferent than the error in our estimation of the b parameter
we select different percent errors for each parameter. The
initial percent errors are chosen by computing the aver-
age percent error of our estimation of the noise parame-

ters over all noise levels, (λ, σ) ∈ {0, 10, 20, 30, 40, 50} ×
{0, 10, 20, 30, 40, 50}, of our synthetic Confocal MICE
dataset. We then select the other two percent errors to be
one standard deviation below and above the average percent
errors.

Table 7 provides results of the PSNR obtained for the
different percent errors in the a,b parameters on a Confocal
MICE dataset with synthetically added Poisson-Gaussian
noise (λ/σ = 30). As mentioned before, our estimation
of the a parameter is much worse than the b parameter most
likely due to the Confocal MICE dataset containing many
dark pixels. Even when using the worst percent errors for
our a,b parameters though we still obtain an increase in
PSNR from the pseudo-clean image which shows that even
a poor estimation using our method can still help denoise
an image. We also note that the PSNR actually increases
with an increase in percent error in the estimate of the b pa-
rameter, which can best be explained by our method always
overestimating the a parameter and underestimating the b
parameter. In practice, a worse estimate of the b parameter
helps compensate for the overestimation of the a parameter,
providing a better approximation of the noise variance.

3.5. BSD68

We also provide results for our method on the BSD68
dataset. We follow the experiment in [1] and train our model
on 400 gray scale images and test on the gray scale ver-
sion of the BSD68 dataset. Both the training and testing
dataset have synthetically added zero mean Gaussian noise
with standard deviation σ = 25.

We evaluate our method on the BSD68 dataset by com-
paring the PSNR obtained using BM3D, a supervised train-
ing method, Noise2Noise, Noise2Void, and three different
outputs of our model: the blindspot neural network, the out-
put obtained estimating the noise parameters, and the output
obtained using the true noise parameters. While our method
is not expected to perform better than the supervised train-
ing method or Noise2Noise, it should perform better than
Noise2Void. Table 8 compares the different outputs of our
model to the various state-of-the-art methods. We observe
that the PSNR of the output of the blindspot neural net-
work, or pseudo-clean image, is significantly worse than
the PSNR of the output of the Noise2Void method, but when
our Poisson-Gaussian noise fitting technique is used we out-
perform Noise2Void. Similar to Noise2Void, our method
performs worse than BM3D which is most likely due to us-
ing too small of a training set to obtain the best possible
pseudo-clean image from the blindspot neural network.

We further evaluate our method by comparing our esti-
mated a,b parameters to the ground truth noise parameters.
Table 9 shows that our method obtains only a decent esti-
mate of the a,b parameters. As mentioned, this is probably
due to the pseudo-clean image not being close enough to the



ground truth clean image to provide a good estimate of the
ground truth noise parameters from our Poisson-Gaussian
noise fitting technique.
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Ground Truth Estimated G-Estimated Ground Truth Estimated G-Estimated
σ a b

10 0 0.00246 0 0.00153 0.00148 0.00165
20 0 0.00434 0 0.00615 0.00605 0.00636
30 0 0.00661 0 0.0138 0.0136 0.0141
40 0 0.00879 0 0.0246 0.0244 0.0250
50 0 0.00113 0 0.0384 0.0381 0.0389

Table 1: Estimated a,b parameters for varying levels of Gaussian noise using our Poisson-Gaussian and pure Gaussian noise
fitting techniques.

Pseudo-Clean Uncalibrated Uncalibrated w/ a = 0 Ground Truth
σ PSNR PSNR PSNR PSNR

10 39.25 39.50 39.58 39.61
20 36.73 36.84 36.96 37.02
30 35.04 35.10 35.26 35.30
40 33.72 33.76 33.92 33.95
50 32.74 32.79 32.91 32.94

Table 2: PSNR comparison between using our uncalibrated method with Poisson-Gaussian noise fitting and Gaussian noise
fitting for estimating the a,b parameters of pure Gaussian noise.

Ground Truth Estimated P-Estimated Ground Truth Estimated P-Estimated
λ a b

10 0.100 0.108 0.100 0 -0.000390 0
20 0.0500 0.0561 0.0500 0 -0.000246 0
30 0.0333 0.0380 0.0348 0 -0.000148 0
40 0.0250 0.0290 0.0258 0 -0.000152 0
50 0.0200 0.0239 0.0208 0 -0.000142 0

Table 3: Estimated a,b parameters for varying levels of Poisson noise using our Poisson-Gaussian and pure Poisson noise
fitting techniques.

Pseudo-Clean Uncalibrated Uncalibrated w/ b = 0 Ground Truth
λ PSNR PSNR PSNR PSNR

10 34.15 34.29 34.38 34.38
20 35.66 35.76 35.90 35.93
30 36.61 36.71 36.82 36.89
40 37.09 37.22 37.36 37.40
50 37.58 37.71 37.83 37.91

Table 4: PSNR comparison between using our uncalibrated method with Poisson-Gaussian noise fitting and Poisson noise
fitting for estimating the a,b parameters of pure Poisson noise.



Ground Truth Estimated Absolute Error Ground Truth Estimated Absolute Error
λ σ a b

10 0.100 0.105 0.00537 0.00153 0.00116 0.000376
20 0.100 0.103 0.00315 0.00615 0.00645 0.000296

10 30 0.100 0.114 0.0135 0.0138 0.0133 0.000539
40 0.100 0.121 0.0209 0.0246 0.0234 0.00122
50 0.100 0.117 0.0177 0.0384 0.0379 0.000578
10 0.0500 0.0565 0.00651 0.00153 0.00128 0.000254
20 0.0500 0.0593 0.00925 0.00615 0.00579 0.000356

20 30 0.0500 0.0608 0.0108 0.0138 0.0134 0.000388
40 0.0500 0.0623 0.0123 0.0246 0.0241 0.000405
50 0.0500 0.0658 0.0158 0.0384 0.0378 0.000614
10 0.0333 0.0392 0.00587 0.00153 0.00134 0.000193
20 0.0333 0.0408 0.00751 0.00615 0.00590 0.000247

30 30 0.0333 0.0430 0.00975 0.0138 0.0134 0.000387
40 0.0333 0.0457 0.0123 0.0246 0.0241 0.000504
50 0.0333 0.0477 0.0144 0.0384 0.0378 0.000623
10 0.0250 0.0305 0.00551 0.00153 0.00131 0.000228
20 0.0250 0.0325 0.00751 0.00615 0.00586 0.000291

40 30 0.0250 0.0340 0.00897 0.0138 0.0135 0.000312
40 0.0250 0.0367 0.0117 0.0246 0.0242 0.000405
50 0.0250 0.0401 0.0151 0.0384 0.0377 0.000352
10 0.0200 0.0250 0.00508 0.00153 0.00135 0.000184
20 0.0200 0.0267 0.00675 0.00615 0.00591 0.000288

50 30 0.0200 0.0281 0.00807 0.0138 0.0137 0.000180
40 0.0200 0.0297 0.00969 0.0246 0.0244 0.000198
50 0.0200 0.0329 0.0129 0.0384 0.0381 0.000353

Table 5: Quantitative comparison of fitting a Poisson-Gaussian noise model on all the different Poisson-Gaussian noise levels
of our synthetic Confocal MICE dataset.



Pseudo-Clean Uncalibrated Ground Truth
λ σ PSNR PSNR PSNR

10 33.96 34.17 34.20
20 33.60 33.75 33.82

10 30 33.09 33.14 33.27
40 32.38 32.42 32.55
50 31.98 32.03 32.14
10 35.45 35.56 35.73
20 34.68 34.75 34.93

20 30 33.97 34.03 34.19
40 33.17 33.22 33.37
50 32.22 32.27 32.39
10 36.18 36.26 36.43
20 35.30 35.37 35.56

30 30 34.10 34.15 34.33
40 33.16 33.22 33.37
50 32.26 32.34 32.45
10 36.61 36.71 36.91
20 35.45 35.53 34.71

40 30 34.47 34.52 34.33
40 33.30 33.37 33.52
50 31.73 31.78 31.92
10 36.95 37.05 37.25
20 35.83 35.90 36.10

50 30 34.47 34.54 34.73
40 33.52 33.57 33.72
50 32.54 32.60 32.74

Table 6: Comparison of PSNR using our bootstrapping method on all the different Poisson-Gaussian noise levels of our
synthetic Confocal MICE dataset.

% error % error Pseudo-Clean Uncalibrated Ground Truth
a b PSNR PSNR PSNR

0 34.10 34.28 34.33
6 4 34.10 34.31 34.33

8 34.10 34.30 34.33
0 34.10 34.17 34.33

22 4 34.10 34.19 34.33
8 34.10 34.24 34.33
0 34.10 34.13 34.33

38 4 34.10 34.14 34.33
8 34.10 34.15 34.33

Table 7: Quantitative results on how our uncalibrated method’s PSNR is affected by varying percent errors in our estimated
a,b parameters. The results shown were done using Poisson-Gaussian noise with λ = 30 and σ = 30.



Uncalibrated (Ours)
BM3D Traditional N2N N2V Pseudo-Clean (Ours) Uncalibrated (Ours) w/ known b

BSD68 28.59 29.06 28.86 27.71 26.95 27.80 28.15

Table 8: PSNR results on the BSD68 dataset.

Ground Truth Estimated Ground Truth Estimated
σ a b

25 0 0.00533 0.00961 0.00861

Table 9: Estimated noise parameters using our uncalibrated method on the BSD68 dataset.


