
In the paper, we propose a novel framework for WSOL
problem by augmenting CAM that is generated from tradi-
tional recognition networks. The performance of our model
on ILSVRC [1] and CUB-200 [4] both outperform previous
methods, becoming the new state-of-the-art.

In the supplementary material, we first show the detail
structure of our backbone network for appending multiple
classifiers to generate CAMs. In addition, we generate more
visualization results to demonstrate that the combined CAM
from our framework is more complete and precise com-
pared with each individual CAM. Furthermore, we compare
our method with SPG [6], a previous method which also uti-
lizes background parts of CAM but sets fixed thresholds in
an one-size-fit-all manner. The better localization results
of our method indicates that the learned sample-adapted
thresholds during training perform much better than the
unique value predefined.

A. Network Structure
We show the backbone networks used for our frame-

work in Fig. 1, which are based on VGGnet [2] and
GoogLeNet [3], respectively.

For VGGnet, we remove the last fully connected layer
and append our two classifiers, WL and WF after fourth
and last pooling layer. In addition, we change the last two
pooling layers to keep the resolution of the feature map,
which follows the configure in [6]. For GoogLeNet, we re-
move the convolutional blocks after Mixed 6e and append
two classifiers after Mixed 6b and Mixed 6e, respectively.
For more details about our two classifiers, please refer to our
paper.

B. Visualization Result
We show more powerful visualization results in Fig. 3

and Fig. 4. In most cases, the combined CAM can gener-
ate more complete and precise localization results compared
with each individual CAM. Besides, we also generate more
visualizations to compare our framework with SPG [6] in
Fig. 2. We can see the CAM augmented by our framework
can cover more precise foreground object rather than only
a small discriminative part, which demonstrate the advan-
tages of our proposed method.
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Figure 1. The structure of our backbone networks. We keep them same with SPG [6] and ACoL [5] to make a fair comparison.
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Figure 2. Comparison between our model and SPG [6]. We keep the backbone network and related configures same.

9878



Figure 3. Visual examples from our CSoA framework on ILSVRC [1] dataset. The red box is predicted results while the green ones are
ground truth labels.
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Figure 4. Visual examples from our CSoA framework on CUB-200 [4] dataset. The red box is predicted results while the green ones are
ground truth labels.
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