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1. Additional Method Details
Edge-Aware Distance Smoothness Loss: In order to reg-

ularize distance and avoid divergent values in occluded or
texture-less low-image gradient areas, we add a geomet-
ric smoothing loss. We adopt the edge-aware term simi-
lar to [1]. The regularization term is imposed on the in-
verse distance map. The loss is weighted for each of the
image pyramid levels and is decayed by a factor of 2 on
each downsampling.

Ls(D̂t) = |∂uD̂∗t |e−|∂uIt| + |∂vD̂∗t |e−|∂vIt| (1)

To discourage shrinking of distance estimates [8], mean-
normalized inverse distance of Dt is considered, i.e. D̂∗t =
D̂−1t /Dt, where Dt denotes the mean of D̂−1t := 1/D̂t.

Cross-Sequence Distance Consistency Loss: Follow-
ing FisheyeDistanceNet [5], we enforce the cross-sequence
distance consistency loss (CSDCL) for the training se-
quence S:

Ldc =

N−1∑
t=1

N∑
t′=t+1

(∑
pt

∣∣∣Dt→t′ (pt)− D̂t→t′ (pt)
∣∣∣

+
∑
pt′

∣∣∣Dt′→t (pt′)− D̂t′→t (pt′)
∣∣∣ )

(2)

Eq. 2 contains one term for which pixels and point clouds
are warped forwards in time (from t to t′) and one term for
which they are warped backwards in time (from t′ to t),
where D̂t′ and D̂t are the estimates of the images It′ and It
respectively for each pixel pt ∈ It.

Additional Considerations: In all the previous
works [10, 1, 2], networks are trained to recover inverse
depth gd : p 7→ g−1D (It(p)). A limitation of these ap-
proaches is that both depth or distance and pose are esti-
mated up to an unknown scale factor. We incorporate the
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Figure 1: Qualitative result comparison on the Fisheye Wood-
Scape dataset between the baseline model without our contribu-
tions and the proposed SynDistNet. Our SynDistNet can recover
the distance of dynamic objects (left images) which eventually
solves the infinite distance issue. In the 3rd and 4th columns, we
can see that semantic guidance helps us to obtain curbs and resolve
the distance of homogeneous areas outputting sharp distance maps
on raw fisheye images. The final row indicates the semantic seg-
mentation predictions.

scale recovery technique from FisheyeDistanceNet [5] and
obtain scale-aware depth and distance directly for pinhole
and fisheye images. We also incorporate the clipping of
the photometric loss values, which improves the optimiza-
tion process and provides a way to strengthen the photomet-
ric error. Additionally, we include the backward sequence
training regime, which helps to resolve the unknown dis-
tance estimates in the image border.



2. Implementation Details

The distance estimation network is mainly based on
FisheyeDistanceNet [5], an encoder-decoder network with
skip connections. After testing different variants of ResNet
family, we chose ResNet18 [3] as the encoder as it pro-
vides a high-quality distance prediction, and improvements
in higher complexity encoders were incremental. It would
also aid in obtaining real-time performance on low-power
embedded systems. We also incorporate self-attention lay-
ers in the encoder and drop the deformable convolutions
used in the baseline model. We could leverage the usage
of a more robust loss function over L1 to reduce train-
ing times on ResNet18 by performing a single-scale image
depth prediction than the multi-scale in [5]. The semantic
segmentation is trained in a supervised fashion with Cross-
Entropy loss and is jointly optimised along with the dis-
tance estimation. We use Pytorch [7] and employ Ranger
(RAdam [6] + LookAhead [9]) optimizer to minimize the
training objective function than the previously employed
Adam [4]. RAdam leverages a dynamic rectifier to adjust
Adam’s adaptive momentum based on the variance and ef-
fectively provides an automated warm-up custom-tailored
to the current dataset to ensure a solid start to training.
LookAhead ”lessens the need for extensive hyperparameter
tuning” while achieving ”faster convergence across differ-
ent deep learning tasks with minimal computational over-
head.” Hence, both provide breakthroughs in different as-
pects of deep learning optimization, and the combination is
highly synergistic, possibly providing the best of both im-
provements for the results.

We train the model for 17 epochs, with a batch size of 20
on 24GB Titan RTX with an initial learning rate of 10−4 for
the first 12 epochs, then drop to 10−5 for the last 5 epochs.
A significant decrease in training time of 8 epochs over the
previous training of the model for 25 epochs in FisheyeDis-
tanceNet [5]. The sigmoid output σ from the distance de-
coder is converted to distance with D = a · σ + b. For the
pinhole model, depth D = 1/(a · σ + b), where a and b
are chosen to constrain D between 0.1 and 100 units. The
original input resolution of the fisheye image is 1280× 800
pixels; we crop it to 1024 × 512 to remove the vehicle’s
bumper, shadow, and other artifacts of the vehicle. Finally,
the cropped image is downscaled to 512× 256 before feed-
ing to the network. For the pinhole model on KITTI, we use
640× 192 pixels as the network input.

3. Qualitative Results

Figure 1 and Figure 2 provides qualitative results of Syn-
DistNet on WoodScape and KITTI test dataset for segmen-
tation and depth estimation tasks respectively. Figure 3
illustrates the qualitative comparison of depth estimation
with the recent state of the art methods.
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Figure 2: Qualitative results on the KITTI dataset. We show-
case depth estimation as well as semantic segmentation outputs on
the KITTI dataset using our SynDistNet.
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