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1. Additional Results for Intra-Dataset Adaptation

1.1. Error Evolution

We show running mean RMSE (vertical axis) for various design choices on all KITTI [4] test videos. As a reminder, our
non-adapted model is Monodepth2 [6] trained with velocity supervision [8]. Horizontal axis represents video frames.
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1.2. Extra Qualitative Comparison

Due to space limitations, we omitted some methods from the qualitative comparison in the paper. Figure 1 shows the
predictions of more methods with code.
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Figure 1. Qualitative results of self-supervised methods on Eigen test split [3] of KITTI [4]. GT stands for the interpolated depth ground
truth. Note that our non-adapted model is Monodepth2 [6] with added velocity supervision. Just like in the paper, only CoMoDA captures
the ground altitude change on the right of the right-most image (near the sidewalk).
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2. Additional Results for Cross-Dataset Adaptation
2.1. Error Evolution

As already stated in the paper, we expect further cross-dataset adaptation performance improvement, given the availability
of longer videos to adapt on. To support our expectation, we provide the running mean RMSE (vertical axis) visualizations
for more NuScenes [1] test videos. In most videos, we observe that the RMSE drop (from the non-adapted model trained on
KITTI [4] to CoMoDA) continues to increase towards the end of those videos. Horizontal axis represents video frames.

0846 0841

CoMoDA

10



0551 0549

0495 0494

CoMoDA

11



0487 0342

0340 0336

CoMoDA

12



0334 0333

0116 0091

CoMoDA

13



0090 0082

0080 0077

CoMoDA

14



2.2. "Failure" case

Similarly to the relative δ < 1.25 improvement shown in the paper, we visualize the relative RMSE improvement for
NuScenes [1] test videos (Fig. 2). These metrics are formalized by Eq. 1:

RIRMSE(s) =

(
RMSE(s)

RMSE∗(s)
− 1

)
· 100%, RIδ(s) =

(
δ∗(s)

δ(s)
− 1

)
· 100%, (1)

where RMSE(s) and δ(s) denote the mean RMSE and δ < 1.25 of the non-adapted model evaluated on video s, and ∗

indicates the use of CoMoDA.

Figure 2. Relative RMSE improvements of our method compared to the non-adapted model (Monodepth2 [6] with velocity supervision [8])
trained on KITTI. Horizontal axis represents test video IDs.

While CoMoDA shows substantial RMSE improvement for most videos, our method demonstrates the noticeably worse
RMSE (red dots) for videos 0112 and 0084.

Both videos 0112 and 0084 contain many frames with such objects as metal grid fences. Fig. 3 shows the example of the
frame with a fence from video 0112 and the errors produced by our method. The area of interest is highlighted with the white
box on top of the input image.

As shown, the LIDAR manages to capture some fine elements of the fence. On the other hand, these elements are not
visible in the images, even in full resolution. This explains the difference between the predictions of our appearance-based
method and the LIDAR measurements, and at the same time makes the huge errors in this area irrelevant for the assessment
of our method.

15



Figure 3. ”Failure” case example. Top row shows the input image and the LIDAR ground truth overlay. Middle row shows the predictions
produced by CoMoDA (left) and the non-adapted model (right). Bottom row shows depth errors overlayed with the input (left – for the
errors of our method, right – for the non-adapted model respectively).
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3. Hyperparameters and other settings
• Depth network: ResNet18 [9] -based encoder-decoder, same as in [6]

• Pose network: ResNet18 with 3 input frames, followed by several convolutions, same as ”separate ResNet” in [6]

• KITTI image size: 192 x 640

• NuScenes image size: 256 x 480

• Smoothness term weight: 1e-3

• SSIM α: 0.85

• Optimizer: Adam [10]

• Learning rate: 1e-4

• Number of samples drawn from the replay buffer: 3

• Velocity supervision term weight: 0.005

• Minimum translation to adapt the model: 0.2m

• Number of scales for the image reconstruction loss: 4 (1, 0.5, 0.25, 0.125)

• Data augmentation during pretraining: brightness (0.8, 1.2), contrast (0.8, 1.2), saturation (0.8, 1.2), hue (-0.1, 0.1),
horizontal flips with probability 0.5

• Batch size during pretraining: 12

• Number of epochs for pretraining: 50
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