A. Supplementary Results
A.1. Datasets

We evaluate our models across five different datasets:
ImageNet [|13]], CelebA [36], CIFAR-10 [30], STL-10 [12]],
and CIFAR-100 [30]]. In general, for preprocessing our
images, we follow settings in [[10}43]. Specifically, for
ImageNet, we use the 1.3M training images downsampled to
size 128 x 128. For CelebA, we use the aligned version of the
200K images downsampled to size 128 x 128. For CIFAR-
10 and CIFAR-100 we use all 50K training images, and for
STL-10, we use all 100K unlabeled images downsampled to
size 48 x 48.

A.2. Training Settings

For all models, we use Residual Network [21] backbones
following [42]. For training the models on all datasets,
we adopt the Adam optimizer [27]] with a learning rate of
2 x 10~* and batch size of 64, following [20,{42]. Specif-
ically, for CIFAR-10, CIFAR-100 and STL-10, we follow
settings in [43] by linearly decaying learning rate over 100K
generator steps, each taken every 5 discriminator update
steps. For ImageNet, we follow [42] by increasing the num-
ber of generator updates to 450K steps instead, but with
no learning rate decay. For CelebA, we follow [[10]] by tak-
ing 100K generator steps, each taken after 2 discriminator
updates and with no learning rate decay.

We emphasize that for fairness in our comparisons, we
re-implemented all considered models using the same code
base and framework, and trained all models under the exact
same training conditions for each dataset.

A.3. Evaluation Settings

In our work, we use three different evaluation metrics:
Fréchet Inception Distance (FID) [23]] and Kernel Inception
Distance (KID) [7] to evaluate generated image diversity,
and Inception Score (IS) [54]] to evaluate image quality.

Fréchet Inception Distance Firstly, FID is a popular met-
ric measuring the diversity of generated images, which we
adopt for ease of comparisons since it is widely used in
the literature. Formally, FID computes the Wasserstein-2
Distance between features produced by a pre-trained Incep-
tion [56]] network for input real and generated images, and is
defined as:

diip = pr — g2 + (S, + 5 — 2(S,5,)2)  (10)

where - and X, denotes the mean and covariance of feature
vectors produced by forwarding real images through a pre-
trained Inception [56] network, and u, and X, similarly
represents the equivalent for fake images. Intuitively, FID
measures the diversity of the generated images, since the

features of the generated images should ideally have a small
distance with those of real images if they look similar on
average. However, we note that FID can produce highly
biased estimates [7]], where using larger sample sizes can
produce better scores, which can causes FID comparisons to
be often mismatched [31]] in practice. Thus, we emphasize
for fairness in comparisons, we use the exact same number
of real and fake images for computing FID.

Kernel Inception Distance KID is an alternative metric
highly correlated with FID that also measures diversity of im-
ages, but produces unbiased estimates [7|], which is useful for
corroborating our findings on FID. Formally, KID measures
the square of the Maximum Mean Discrepancy (MMD) [17]]
between two probability distributions in a metric space, and
can be defined as:

dxip = MMD?(X,Y')
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for two random variables X and Y from different distribu-
tions, sample sizes m and n, and k is the polynomial kernel
defined as:

k(w,y) = (éxTy +1)° (12)

where d represents the dimensions of the samples. Intuitively,
MMD measures the distance between distributions using a
function from a class of witness functions such that if the
true distance between the distributions is zero, the distance
between the mean embeddings produced by this function will
also be zero. Here, the polynomial kernel is cubic in order to
measure the first three moments of the distributions (mean,
variance, and skewness), and the embedding is defined on
the feature space through the Inception network. Similar to
FID, we use the same number of real and fake images for all
models when computing KID.

Inception Score Finally, IS aims to measure the realism
of generated images using the same Inception network, and
can be formally defined as:

drs = exp(Eqznp, Drr(p(y|2)[P(y))) (13)

where a high score is achieved if the conditional class distri-
bution p(y|x) has low entropy and the marginal class distri-
bution p(y) has high entropy, causing a large KL divergence
between the two distributions for some samples x from the
generated image distribution pg. Intuitively, a large score is



Metric K  DCGAN  DCGAN +IM
#Modes 1/4 27.67+047  62.00+1.63
#Modes 1/2 610.00+883 716.67+1.25

Da(pllg) 1/4 5444001  4.68+0.01
Da(pllg) 172 1.98+0.01  1.64+0.01

Table 5: Number of modes (higher is better) recovered by
the generator on the Stacked MNIST dataset, where the max-
imum value is 1000; and KL divergence Dy (p||q) between
the distribution of generated modes p and the uniform distri-
bution ¢, where lower is better. ‘+ IM” refers to adding our
proposed InfoMax-GAN objective.

produced if the Inception network gives a high probability to
one class, indicating it looks realistically in one class. Thus,
IS tends to correlate well with human assessment for quality
of images [54].

Sample sizes For all FID scores reported in this paper, we
compute them using 50K real samples and 10K fake samples
across 3 random seeds to report the mean and standard devia-
tion of the scores. As 50K real samples are much lesser than
the 1.3M images in ImageNet, we randomly sample with-
out replacement 50 images from each of the 1000 classes
to compute the real image statistics, to avoid high bias in
the results. We emphasize that for fairness in comparisons,
we used the same number of real and fake samples when
computing FID, since FID can produce highly bias estimates
at different sample sizes [7]. In fact, we note that lower FID
scores can indeed be obtained if we simply use larger sample
sizes, particularly for larger datasets like ImageNet. How-
ever, our experiments show that in practice, the performance
margins remain the same above our current configuration.
For KID, we follow the same procedure for all datasets but
use 50K real and fake samples instead. Finally, for IS, we
use S0K fake samples.

We emphasize that all these evaluation settings are kept
the same for all model evaluations for each dataset, in order
to ensure fairness and accuracy in our comparisons.

A.4. Improved Mode Recovery

Following settings in [41], we re-implement the DCGAN
[52] in [41] and evaluate its ability in recovering all 1000
modes of the Stacked MNIST dataset [41]], composed by
randomly stacking 3 grayscale MNIST [33]] digits into an
RGB image, resulting in 1000 possible modes. We use a
pre-trained MNIST classifier to classify each color channel
of a generated image, and the model is said to recover 1
mode if it generates at least 1 image for that mode. We
similarly set K € {i % , where K indicates the size of
the discriminator relative to the generator. Intuitively, the

smaller K is, the easier it is for the generator to fool the
discriminator with just a few modes, resulting in less modes
recovered. Furthermore, we compute the KL divergence
Dx1(p||q) between the generated mode distribution p and
optimal uniform distribution of the modes q. We see from
Table [5] that our method helps to recover more modes for
all K, with the recovered distribution having a consistently
lower KL divergence with the ideal uniform distribution as a
result.

A.5. Additional Ablation Studies

In this section, we analyze the impact of our framework
design choices and their performance impact.

Relative Scale of Objective From Figure[7] we see in both
our chosen hyperparameters of & = § = 0.2 and the other
extreme of o = 3 = 1.0, the InfoMax objective loss decays
very quickly relative to the GAN loss. In practice, we found
that « = 3 = 0.2 performs better, which could be attributed
to the relative magnitude of the InfoMax objective loss at the
start of the training. When a = 3 = 0.2, the scales of the
GAN and InfoMax objective losses are approximately equal
initially. We highlight this is the same loss scaling principle
applied in [11]].

Position of feature maps While we have chosen the local
and global features to be the penultimate and final features
of the discriminator encoder respectively, we examine the
effect of alternative designs. For clarity, we note there is
only one global feature vector, which is the final feature
output of the encoder. Correspondingly, our design can be
called local-global, and other designs involving extracting
intermediate local feature maps Cy, ,(x),1 < k < n can be
described as local-local. However, in practice, our original
design of local-global is the only feasible option compared
to local-local option, mainly due to the memory consump-
tion: for any two feature maps of spatial size M; x M; and
My x Ms respectively, we have the space complexity as
O(N M?M3R) for batch size N and RKHS R. Fixing the
first feature map size, the local-local approach has space
complexity growing quadratically on the second feature map
size M, which is in turn dependent on the image resolution.
On the other hand, the local-global approach effectively sets
My = 1, which dramatically reduces memory consumption.

In fact, in practice, we found the local-local approach
cannot scale to datasets above 32 x 32 resolution as it would
exceed 11GB for a single GPU. To still test this approach
on the 32 x 32 resolution CIFAR-10 dataset, we reduce
the memory consumption by randomly sampling only half
of local spatial vectors from each feature map. Even so,
the memory consumption is approximately 7 times of the
local-global approach, making it highly memory intensive.
In contrast, the local-global approach scales for even high
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Figure 7: We show that the InfoMax objective loss decays very quickly regardless of the choice of scale for both « and /.
errD and errG represents the GAN losses for the discriminator and generator respectively, and similarly, errD_IM and
errG_IMrepresents the InfoMax objective losses for the discriminator and generator respectively.

resolution (e.g. 128 x 128) datasets and takes only a small eyes and noses not well blended together. This blending prob-
portion of the memory size compared to the GAN models. lem is more commonly seen in SSGAN generated images,
Importantly, the local-local approach worsens FID by 3.1 which may explain its worse FID performance compared to
points from 17.14 £ 0.20 to 20.20 £ 0.05. Thus, this abla- both SNGAN and InfoMax-GAN. We further provide image
tion study show that in practice, our current design is the samples randomly generated for all datasets in Appendix
most optimal for achieving both performance and memory A0

consumption gains. For further qualitative comparisons, we present randomly

sampled, non-cherry picked images generated by SNGAN
and InfoMax-GAN for all datasets in Figures [0} [T0]and[T1]
We qualitatively observe that the images are more diverse and
have sharper shapes after the use of an InfoMax objective.

Effect of spectral normalizing critic Interestingly, using
spectral normalisation for the InfoMax-GAN critic networks
leads to FID improvements. On CIFAR-10, using spectral
normalisation for these critic networks improved FID by 1.5 .

points from 18.67 + 0.25 to 17.14 4+ 0.20. We conjecture B. InfoGAN Comparison

this could be related to the Wasserstein Dependency Mea- For clarity and disambiguity, Table|[6]illustrates the differ-
sure [48]], a variant of mutual information which replaces ences in our work with InfoGAN. Our works have different
the KL divergence term with Wasserstein distance, as mea- focuses: InfoGAN focuses on learning disentanglements
sured using encoders from the class of 1-Lipschitz functions. in image generation, while we focus on improving image
However, in contrast to this work, our method enforces 1- synthesis as a whole.

Lipschitzness of the encoder using spectral normalization
rather than gradient penalty. A theoretical treatment of this C. Model Architectures
relationship is beyond the scope of this paper, which we

leave as future work. We detail the exact GAN architectures used for all

datasets in Tables[7} [8) O] We also detail the architectures

A.6. Generated Image Samples for projecting the local and global features to a higher di-

. . mensional RKHS for solving the InfoNCE task in Table
In Figure[8] we show generated images at 128 x 128 reso-

lution for CelebA. In general, we observe that images gener-
ated by InfoMax-GAN have less visual artifacts for both the
background and facial attributes, with even attributes like
spectacles and caps generated. In contrast, both SNGAN and
SSGAN generated images tend to have more severe back-
ground artifacts, with certain prominent facial features like



Figure 8: Generated CelebA images at 128 x 128 resolution for (a) SNGAN, (b) SSGAN, and (c) InfoMax-GAN. In general,
we observe InfoMax-GAN generated images have less visual artifacts in both the background and the facial attributes. We
note these images are randomly generated and non-cherry picked.

MI
Work Target Outcome MI Objective Approximation
Technique
Disentangled representation learning Variational
InfoGAN [11] by using an input encoding ¢ Z(c;G(z,0)) Information
to the generator to control its output. Maximization

Improve image synthesis by reducing
InfoMax-GAN (ours) catastrophic forgetting of discriminator Z(Cy(X); Ey (X)) InfoNCE [47] Task
and mode collapse of generator.

Table 6: Comprehensive differences with InfoGAN. Our work mainly differs in the intended outcome, the objective to meet
the outcome, and the approximation technique needed to solve the objective.



Figure 9: Randomly sampled and non-cherry picked images for SNGAN (left) and InfoMax-GAN (right) for CIFAR-10,
CIFAR-100, and STL-10.

(c) STL-10.



Figure 10: Randomly sampled and non-cherry picked generated CelebA images for SNGAN (top) and InfoMax-GAN (bottom).
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Figure 11: Randomly sampled and non-cherry picked generated ImageNet images for SNGAN (top) and InfoMax-GAN
(bottom).




Table 7: Network architectures for the CIFAR-10 and CIFAR-100 datasets, which follows exact settings in .

(a) Generator

(b) Discriminator

z € R ~ N(0,1)

RGB image x € R32%32x3

Linear, 4 x 4 x 256

ResBlock down 128

ResBlock up 256

ResBlock down 128

ResBlock up 256

ResBlock 128 — Local Features

ResBlock up 256

ResBlock 128

BN; ReLU; 3 x 3 conv, 3; Tanh

ReLLU

Global Sum Pooling — Global Features

(c) Self-supervised Discriminator

Linear — 1

RGB image x € R32%32x3

ResBlock down 128

ResBlock down 128

ResBlock 128 — Local Features

ResBlock 128

ReLU

Global Sum Pooling — Global Features

Linear — 1; Linear — 4




Table 8: Network architectures for the STL-10 dataset, which follows exact settings in .

(b) Discriminator

(a) Generator RGB image x € R48x48x3
ResBlock down 64
2 €R® ~ N(0,1)
ResBlock down 128
Linear, 6 X 6 x 512
ResBlock down 256
ResBlock up 256
ResBlock down 512 — Local Features
ResBlock up 128
ResBlock 1024
ResBlock up 64

ReLLU

BN; ReLU; 3 x 3 conv, 3; Tanh

Global Sum Pooling — Global Features

Linear — 1

(c) Self-supervised Discriminator

RGB image x € R18*48x3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512 — Local Features

ResBlock 1024

ReLU

Global Sum Pooling — Global Features

Linear — 1; Linear — 4




Table 9: Network architectures for the CelebA and ImageNet datasets. This follows the exact settings in the official SNGAN

code .

(a) Generator

(b) Discriminator

2 € R ~ N(0,1)

RGB image x € R128><128><3

Linear, 4 x 4 x 1024

ResBlock down 64

ResBlock up 1024

ResBlock down 128

ResBlock up 512

ResBlock down 256

ResBlock up 256

ResBlock down 512 — Local Features

ResBlock up 128

ResBlock down 1024

ResBlock up 64

ResBlock 1024

BN; ReLU; 3 x 3 conv, 3; Tanh

ReLU

Global Sum Pooling — Global Features

(c) Self-supervised Discriminator

Linear — 1

RGB image x € R128x128%3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512 — Local Features

ResBlock down 1024

ResBlock 1024

ReLLU

Global Sum Pooling — Global Features

Linear — 1; Linear — 4

Table 10: InfoNCE projection architectures, which follow what were proposed in . In practice, we extract the local
features and global features from the penultimate and final residual blocks of the discriminator respectively. This decides the

corresponding values of feature depth K.

(a) Local features projection architecture.

(b) Global features projection architecture.

1 x 1 Conv, K;1 x 1 Conv, R — Shortcut

ReLU

Linear — K; Linear — R — Shortcut

1 x 1 Conv, R + Shortcut

ReLU

1 x 1 Conv, R + Shortcut




