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Method Channel
dim.

PF-PASCAL (⌧img)
0.05 0.1 0.15

COLD (Ours)

4 49.2 73.7 84.0
8 56.5 78.2 87.5
16 58.3 80.8 88.5
32 66.4 84.0 90.0
64 67.8 84.2 90.5

128 71.2 86.8 92.1
256 72.2 87.1 92.4
512 73.3 88.2 92.9

1024 75.7 88.2 92.9
1536 76.6 88.8 93.6
2048 75.8 89.2 93.7
3072 76.8 89.0 93.4

NC-Net [7] 1024 54.3 78.9 86.0
SF-Net [4] 3072 53.6 81.9 90.6

DCC-Net [3] 1024 55.6 82.3 90.5
HPF [5] 6400 60.1 84.8 92.7

Table 1. Experiment of smaller channel dimension of local de-
scriptors.

1. Extent of channel size

We study how far we can reduce our channel dimensions
during feature transformation while minimizing the perfor-
mance degradation, to see how more compact our descrip-
tors can be. Table 1 illustrates the results evaluated on PF-
PASCAL [2] dataset, showing the PCK values obtained for
each final channel dimension of local descriptors. It can
be seen that our model has comparable results with NC-
Net [7] even when our final channel dimensions are as small
as 8. COLD with 1024 channel size, which is same with
NC-Net [7], performs 15.6%p, 9.3%p, and 6.9%p higher in
threshold 0.05, 0.1, and 0.15, respectively. When channel
dimensions are higher than 1024, there is a slight difference
in their performance, revealing that the results of COLD
with channel dimension more than 1024 is saturated in the
PF-PASCAL dataset. Our model failed to converge when
trying to output descriptors with channel dimensions below
4. We used ResNet-101 as our backbone network, and used

the hyperparameter settings described in section 4 of the
main paper for training our model in this experiment.

2. Qualitative results
Figure 1 and 2 show the qualitative results on Aachen

day-night [8] and HPatches [1]. These datasets consist
of rigid scenes with illumination and viewpoint changes.
The visualized correspondences are found using nearest-
neighbour search.

Figure 3 and 4 show the qualitative comparisons with
the existing models [3, 5, 7] of PF-PASCAL [2] and SPair-
71k [5] datasets. We visualize matches to transfer the key-
points by prediction of each model.



Figure 1. Qualitative results on Aachen day-night [8] dataset. Our model correctly infers corresponding points, even in occluded cases
(row 2).



Figure 2. Qualitative results on HPatches [1] dataset. We select 50 random correspondences from the prediction of our model. These results
show that our model is robust to illumination changes (row 1, 2), rotation changes (row 3), and viewpoint changes (row 4).



(c) NCNet (d) DCCNet (e) HPF (f) Ours(b) Target(a) Source
Figure 3. Qualitative comparisons on PF-PASCAL [2] dataset. Correct matches are colored as green and incorrect matches as red. The
distance threshold for correctness was set to 20 pixels. We evaluated our model under images with partial occlusion (rows 1-3), extremely
variant semantics (rows 4-5), and deformable objects (rows 6-7). The first two columns show source and target images, and the remaining
columns show results from NCNet [7], DCCNet [3], HPF [5], and ours, respectively.



(d) DCCNet (e) HPF (f) Ours(b) Target(a) Source (c) NCNet
Figure 4. Qualitative comparisons on SPair-71k [6] dataset. Correct matches are colored as green and incorrect matches as red. The
distance threshold for correctness was set to 20 pixels. We evaluated on image pairs under various changes - illumination, viewpoint,
scale, occlusion, and truncation - where each image pair may be under multiple condition changes. For example, we can observe not only
illumination changes but also scale changes in row 1. The first two columns show source and target images, and the remaining columns
show results from NCNet [7], DCCNet [3], HPF [5], and ours, respectively.
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