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In the supplementary we provide more ablation stud-
ies on the MV-SMPLify part of our methods. The first
part compares the performance of MV-SMPLify and classic
SMPLifiy [1] on human pose and shape estimation. Then,
more qualitative results from the Human3.6M [2], MPI-
INF-3DHP [4] and 3DPW [5] of our method are given to
show the performance of our method in more depth.

1. Comparison to SMPLify

As shown in the paper, MV-SMPLify is used to ob-
tain the optimized SMPL models. In this section, we first
compare the performance of MV-SMPLify and SMPLify[1]
to demonstrate the advantage of using multi-view images.
Taking 100×4 images from S1 in Human3.6M as an ex-
ample, these images were fed into the CNN with the pre-
trained parameters in [3]. Using the output of the CNN as
initialization, we optimized the energy functions of the MV-
SMPLify and SMPLify to get optimized pose and shape,
respectively. Some examples from the 100×4 images are
shown in Fig. 1. The second column in Fig. 1 shows the
results of SMPLify, while the third column shows the result
from the MV-SMPLify. We can see that the results from the
MV-SMPLify better fit the ground truth and reduce the am-
biguity of limbs in 3D space. Especially for the feet and
body orientations, MV-SMPLify has more robust perfor-
mance than the single image SMPLify. We also compute
the reconstruction error, PCK and AUC of 3D joint points
of the 100×4 images. The results are shown in Table 1 and
Figure 2. We can see from Table 1 that MV-SMPLify can
achieve higher PCK and AUC, while the reconstruction er-
ror is lower than when using a single image. Figure 2 gives
the curve of PCK with different thresholds and it also shows
that MV-SMPLify had higher AUC and PCK with 150 mm
as threshold. Therefore, MV-SMPLify is more stable and
reliable for our method and hence provides better supervi-
sion for training the CNN.

In addition, Figure 3 shows the comparison of the re-
gressed SMPL model of CNN and optimized SMPL model
obtained by MV-SMPLify. In the figure, the pink models

(a) Original images (b) SMPLify (c) MV-SMPLify

Figure 1. The results from SMPLify [1] and MV-SMPLify. From
left to right: original image, SMPLify [1] and MV-SMPLify.

PCK ↑ AUC ↑ Rec. Error ↓
SMPLify [1] 93.9 54.9 70.0
MV-SMPLify 97.4 60.7 59.2

Table 1. Comparison of the results from using single images and
multi-view images, respectively.
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Figure 2. The AUC of SMPLify and MV-SMPLify for different
joints. Top SMPLify and bottom MV-SMPLify.

Figure 3. Comparison between the regressed and optimized SMPL
model. The pink models are the results after regression. The white
models are the the results after MV-SMPLify.

are the results of the CNN and the white models are the re-
sults after MV-SMPLify for the multi-view images. We can
see that the results after MV-SMPLify are better, looking at
the limbs of the optimized SMPL model, that are closer to

the ground truth, especially for the results of the 3rd and 4th
rows. This also demonstrates that it is advantageous to use
the results of MV-SMPLify to supervise the training of the
network, obtaining better estimation of the pose and shape.

2. Qualitative results
Extra results of our method from the Human3.6M [2],

MPI-INF-3DHP [4] and 3DPW [5] are shown in Figure 4.
These images show various poses and are captured under
both indoor and outdoor scenarios. The first three rows
are from Human3.6M and the middle three rows are from
MPI-INF-3DHP. The last three rows are from 3DPW. The
original image and the 3D model of our method (from dif-
ferent views) are given for each image. We can see that
our method achieves promising 3D pose and shape estima-
tion on the these images. Even for the 3DPW which only is
used for testing, the estimated 3D models of our method are
also satisfying. This figure demonstrates the effectiveness
of our method.
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Figure 4. The results of our method on the three datasets. The first three rows are from Human3.6M, the middle three rows are from
MPI-INF-3DHP and the last three rows are from 3DPW. For each example, the original image, the 3D model and the 3D model from
another view are given.


