
Deep Interactive Thin Object Selection (Supplementary Material)

Jun Hao Liew1 Scott Cohen2 Brian Price2 Long Mai2 Jiashi Feng1

1 National University of Singapore 2 Adobe Research
liewjunhao@u.nus.edu {scohen,bprice,malong}@adobe.com elefjia@nus.edu.sg

A. Additional Comparison with SOTAs

In addition to Fig. 3 in the main paper which com-
pares the state-of-the-art interactive segmentation methods
on HRSOD [15] dataset, we additionally provide evalua-
tion results on COIFT [10] dataset (Fig. 1). We first no-
tice that despite producing overall good quality segmenta-
tion (IoU∼ 80%), existing state-of-the-art methods struggle
when segmenting elongated thin parts (IoUthin ≤ 55%).
On the other hand, our TOS-Net outperforms all other
methods by a significant margin (∼ 10% IoU and ≥ 25%
IoUthin). Moreover, the relative performance gap between
IoU and IoUthin for TOS-Net is significantly smaller than
other methods, demonstrating the effectiveness of both the
three-stream design as well as the new dataset.

Figure 1: Comparison between our TOS-Net and ex-
isting state-of-the-art methods, including DIOS [14],
DEXTR [9]1, f-BRS [13]2and Latent Diversity [6]3. We
employ IoU and IoUthin at 4th click as evaluation metric.

B. Extraction of Thin Parts

Intuitively, for a thin part, its innermost pixel should be
close to the nearest boundaries. Inspired by this, we design

1https://github.com/scaelles/DEXTR-PyTorch
2https://github.com/saic-vul/fbrs_interactive_

segmentation
3https://github.com/intel-isl/Intseg

an algorithm for extraction of thin parts for evaluation met-
ric IoUthin. The detailed steps are shown as follows:

• Step 1: Given an object mask M ∈ {0, 1}H×W , we first
compute an Euclidean distance transform as follows:

φ(x,B) = min
x′∈B

D(x,x′) (1)

where B denotes the set of background pixels in M while
D(x,x′) refers to the Euclidean distance between pixel lo-
cations x and x′. Fig. 2(b) shows an example of distance
map where each pixel value corresponds to the distance to
its closest boundaries.

• Step 2: Given the distance map, we compute the local
peaks and only retain those peaks whose distance value is
smaller than a threshold τ . We denote these local peaks as
“seeds” S. In this work, we empirically set τ to:

τ = 10× max(Hbox,Wbox)

300
(2)

where Hbox and Wbox denote the height and width of the
bounding box enclosing the object. An example of the ex-
tracted peaks before and after thresholding can be found in
Fig. 2(c)(d).

• Step 3: We next aggregate all the pixels close to these
seeds S to obtain the thin parts. To this end, we com-
pute the shortest path between each pixel and the seeds
S within the object mask M using skfmm.distance4.
This is to avoid a pixel being included which is close in Eu-
clidean distance to a seed point but the direct path would go
through background. The resulting distance map ψ(x) is
then thresholded using the same threshold value τ in Eqn.
(2) to obtain thin parts T ∈ {0, 1}H×W (Fig. 2(e)).

• Step 4: However, thin parts extracted from the previ-
ous step often contain some “non-thin” pixels. For ex-
ample, some small parts of the insect body are included
where the legs meet the body as indicated by the red ar-
rows in Fig. 2(e). To remove these unwanted “non-thin”

4https://pythonhosted.org//scikit-fmm/#skfmm.
distance

https://github.com/scaelles/DEXTR-PyTorch
https://github.com/scaelles/DEXTR-PyTorch
https://github.com/saic-vul/fbrs_interactive_segmentation
https://github.com/saic-vul/fbrs_interactive_segmentation
https://github.com/saic-vul/fbrs_interactive_segmentation
https://github.com/saic-vul/fbrs_interactive_segmentation
https://github.com/intel-isl/Intseg
https://github.com/intel-isl/Intseg
https://pythonhosted.org//scikit-fmm/#skfmm.distance
https://pythonhosted.org//scikit-fmm/#skfmm.distance
https://pythonhosted.org//scikit-fmm/#skfmm.distance
https://pythonhosted.org//scikit-fmm/#skfmm.distance


(a) 𝑀 (b) 𝜙(𝐱) (c) Local peaks (d) Seeds 𝑆

(e) Thin parts 𝑇 (f) Non-thin parts 𝑁 (g) Refined thin parts 𝑇∗ (h) Evaluation mask

Figure 2: Extraction of thin parts for evaluation metric IoUthin.

pixels, we first extract the “non-thin” region (Fig. 2(f)) via
N = M − T and aggregate the nearby pixels using the
same skfmm.distance function in Step 3. The post-
processed thin parts can then be obtained by simply thresh-
olding the resulting distance map using τ and taking its
complement. Fig. 2(g) shows an example of the refined thin
parts, which we denote as T ∗.

• Step 5: For evaluation, we also consider a small strip of
background surrounding T ∗ to prevent trivial solution that
predicts the entire mask to be foreground. Specifically, we
extract an evaluation mask Meval as follows:

Meval = {x : φ(x, T ∗) ≤ τ} \N∗ (3)

where N∗ = M − T ∗. As shown in Fig. 2(h), the gray
pixels denote the “void” labels ({x :Meval(x) = 0}) which
will be excluded from evaluation. In this case, the metric
IoUthin can better evaluate the performance on thin parts.

C. Network Architecture
As described in the main paper, our TOS-Net consists

of three separate streams: 1) context stream which accepts
a fixed-resolution input image to extract global context for
coarse prediction; 2) high-resolution edge stream that pro-
cesses the high resolution input to delineate the object con-
tours; and 3) fusion stream that fuses the information from
the preceding two streams to produce the final segmentation
output. The overall architecture is depicted in Fig. 3. The
details of each stream will be illustrated below.
Context Stream. Our context stream employs ResNet-50-
based [5] DeepLabv3+ [1] as its backbone. Specifically, it

applies an Atrous Spatial Pyramid Pooling (ASPP) module
for aggregating multi-scale context, followed by a decoder
that incorporates low-level features from earlier layers for
refinement. We append a 1×1 convolution layer with sig-
moid activation at the end of the decoder to produce a fixed-
resolution binary segmentation mask.

High-resolution Edge Stream. The high-resolution edge
stream employs an FPN-style structure [7], containing mul-
tiple encoder and decoder blocks as shown in Fig. 4. At
each encoder, the features are first passed to 2 consecu-
tive {conv-gn-relu} blocks, followed by a max pooling
layer before concatenated with the features from the context
stream. However, we note that the features extracted from
the context stream is incompatible with the encoder features
when patch-based training scheme is adopted. To overcome
this, we employ an RoIAlign [4] layer to extract the fea-
tures from the corresponding patches in the context stream
before the concatenation operation. During inference, we
simply set the RoI to cover the full input image. Note that
we do not apply max pooling for the last encoder block to
avoid excessive loss in spatial details.

On the other hand, each decoder block first passes the
features to 2 consecutive {conv-gn-relu} blocks, fol-
lowed by a bilinear upsampling operation before being
summed with features from the earlier encoder blocks. Two
additional {conv-gn-relu} blocks are applied before
passing to the next decoder. Similar to the context stream,
we append a 1×1 convolution layer with sigmoid activation
at the end of the last decoder to produce a boundary map
whose resolution is the same as the input image.

Fusion Stream. The fusion stream takes the input im-



H✕W
✕3

H✕W
✕1

512✕512
✕3

512✕512
✕1

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

En
co
de
r	B

lo
ck

En
co
de
r	B

lo
ck

En
co
de
r	B

lo
ck

En
co
de
r	B

lo
ck

En
co
de
r	B

lo
ck

AS
PP

De
co
de
r

128
✕128
✕1

1✕
1c
on
v	

+	
si
gm

oi
d

De
co
de
r	B

lo
ck

De
co
de
r	B

lo
ck

De
co
de
r	B

lo
ck

De
co
de
r	B

lo
ck

H✕W
✕1

C

1✕1	conv

1✕1	conv

1✕
1	c

on
v

Bo
tt
le
ne
ck

Bo
tt
le
ne
ck

Bo
tt
le
ne
ck

1✕
1c
on
v	
+	
si
gm

oi
d

H✕W
✕1

𝐼"#

𝐼$#

Gaussian
heatmapImage

Image Image
Gradient

Edge

Mask

Mask

High-resolution	Edge	Stream

Context	Stream

Fusion	Stream

1✕
1c
on
v	

+	
si
gm

oi
d

Figure 3: Overall architecture of TOS-Net. C© denotes concatenation operation.

𝐹

𝐹"#$%&'%

✕2 Max
pool

ROI
Align

C
✕2 interp ✕2

(a) Encoder block (b) Decoder block

𝐹&$"

𝐹&$"

Figure 4: Details of encoder and decoder blocks used in the high-resolution edge stream. ‘×2’ denotes a stack of 2 con-
secutive {conv-gn-relu} blocks while ‘interp’ implies bilinear interpolation. C© and

⊕
refer to concatenation and

summation, respectively.

age, semantic features from the context stream and high-
resolution boundary features from the edge stream as in-
put for final prediction. Both the input image and boundary
features are first passed to a 1×1 convolution layer prior to
concatenation, followed by 3 bottleneck blocks [5]. Lastly,
a 1×1 convolution layer with sigmoid activation is applied
to output the final segmentation mask.

D. Comparison with Matting Algorithms

We also compare as a matting method as both our
method and matting methods are designed to capture thin

areas. The problems of course are slightly different in that
matting methods receive a significant amount of user input
in the form of a trimap (foreground/background/unknown)
while our method only receives 4 input extreme points. On
the other hand, matting methods can also capture a soft
mask of thin areas where pixels are a mixture of foreground
and background, while our method focuses on a binary seg-
mentation. Nonetheless we think it is valuable to compare
the performance on thin parts.

Specifically, we compare with IndexNet [8]5, a recently

5https://github.com/poppinace/indexnet_matting

https://github.com/poppinace/indexnet_matting
https://github.com/poppinace/indexnet_matting


Figure 5: Comparison with image matting algorithm. Top left: Image taken from HRSOD [15] dataset. Top Right: Seg-
mentation prediction by our TOS-Net. Bottom left: Trimap input for matting algorithm. Bottom right: Matting results by
IndexNet [8]. Note that our method only requires 4 extreme clicks as input, while achieving comparable performance to that
of matting algorithm which requires carefully drawn trimap as input.

Method
COIFT HRSOD

IoU IoUthin IoU IoUthin

IndexNet [8] 92.0 67.4 92.8 64.2
Ours 92.0 76.4 86.4 65.1

Table 1: Comparison with the state-of-the-art image mat-
ting method, IndexNet [8].

published state-of-the-art matting algorithm. Same as be-
fore, we evaluate on COIFT and HRSOD datasets using
IoU and IoUthin as metric. To generate a trimap input, we
perform morphological dilation and erosion on the ground
truth mask to create an “unknown” band. We use a larger
kernel size (k = 50) for morpholocal operations on HRSOD
dataset due to its average larger image size as compared to
COIFT (k = 25). Examples of generated trimaps can be
found in the bottom left of Fig. 5. We threshold the pre-
dicted alpha matte by 0.5 to obtain a binary mask for evalu-
ation. The results are summarized in Table 1.

We first notice that IndexNet achieves very high IoU on
both datasets (≥ 92%) because the true labels of majority
pixels are already known in the trimap input. In addition,
it should also be noted that IndexNet receives significantly
more information from the trimap as compared to four ex-
treme points in our case, therefore leading to an overall
better performance. On the other hand, in term of IoUthin

which focuses on segmentation accuracy on thin parts, we
can see that our method attains a comparable or even bet-
ter performance than IndexNet that requires carefully drawn
trimap as inputs, suggesting the potential of our method for

practical thin object segmentation application. We also pro-
vide some qualitative comparison in Fig. 5 where we can
see our TOS-Net successfully segments the string (left sub-
figure) despite the strong appearance overlap between the
string and its surrounding background.

E. Performance on General Objects
We also study the performance of TOS-Net on general

object scenes, such as PASCAL VOC validation [2] (1,449
images), GrabCut [12] (50 images) and Berkeley [11] (100
images) datasets. The results are summarized in Table 2 and
Fig. 6. We observe that our TOS-Net excels in extracting
elongated thin details (e.g. potted plants in the first row of
Fig. 6). However, in overall comparison, we notice that our
TOS-Net trained on ThinObject-5K dataset performs poorly
especially on PASCAL validation set when compared to
DEXTR trained on PASCAL-10K dataset. When inspect-
ing closer, we find this is mainly due to the inconsistent
ground truth annotations between ThinObject-5K and PAS-
CAL dataset. For example, as shown in the second row
of Fig. 6, the ‘table’ class includes all the items on it. To
validate this, we train our TOS-Net on both ThinObject-5K
and PASCAL-1K 6 (which accounts for∼13% of PASCAL-
10K) and observe a significant boost in performance.

F. Additional Qualitative Results
In addition to Fig, 8 in our main paper, we also provide

more qualitative results in Fig. 7, 8 and 9. Compared to
6We denote PASCAL train set augmented with additional labels from

SBD [3] and the one without SBD labels as PASCAL-10K (10,582 images)
and PASCAL-1K (1,464 images), respectively.



Methods PASCAL GrabCut Berkeley

DEXTR [9] 91.5 94.4 -
TOS-Net 72.0 92.6 87.6
TOS-Net† 89.1 95.3 89.8

Table 2: General object segmentation on PASCAL [2],
GrabCut [12] and Berkeley [11] datasets. † denotes train-
ing on both ThinObject-5K and PASCAL-1K datasets.

Input Image TOS-Net Ground truth

Figure 6: Qualitative results of our TOS-Net trained on
ThinObject-5K dataset. The rightmost column shows the
corresponding ground truth masks from PASCAL valida-
tion set where gray pixels denote “void” labels.

the baseline, our TOS-Net in general produces segmenta-
tion with accurately localized boundary, particularly along
thin parts, Moreover, it performs well even on images with
significant appearance overlap between thin parts and their
surrounding backgrounds (e.g. necklace in Fig. 7, and but-
terfly antenna in Fig. 8 (2nd row)).

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018.

[2] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (VOC) challenge. IJCV, 2010.

[3] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, 2011.

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[6] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Interactive
image segmentation with latent diversity. In CVPR, 2018.

[7] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[8] Hao Lu, Yutong Dai, Chunhua Shen, and Songcen Xu. In-
dices matter: Learning to index for deep image matting. In
ICCV, 2019.

[9] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and
Luc Van Gool. Deep extreme cut: From extreme points to
object segmentation. In CVPR, 2018.

[10] Lucy AC Mansilla and Paulo AV Miranda. Oriented image
foresting transform segmentation: Connectivity constraints
with adjustable width. In SIBGRAPI Conference on Graph-
ics, Patterns and Images (SIBGRAPI), 2016.

[11] Kevin McGuinness and Noel E O’Connor. Toward auto-
mated evaluation of interactive segmentation. Computer Vi-
sion and Image Understanding, 2011.

[12] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
Grabcut: Interactive foreground extraction using iterated
graph cuts. In ACM ToG, 2004.

[13] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton
Konushin. f-BRS: Rethinking backpropagating refinement
for interactive segmentation. In CVPR, 2020.

[14] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and
Thomas S Huang. Deep interactive object selection. In
CVPR, 2016.

[15] Yi Zeng, Pingping Zhang, Jianming Zhang, Zhe Lin, and
Huchuan Lu. Towards high-resolution salient object detec-
tion. In ICCV, 2019.



Image DEXTR TOS-Net (ours) Ground truth

Figure 7: Qualitative comparison between DEXTR [9] (M2) and our TOS-Net (M8) on ThinObject-5K dataset. Note that
both models are trained on ThinObject-5K for fair comparison. The red clicks denote the input extreme points.



Image DEXTR TOS-Net (ours) Ground truth

Figure 8: Qualitative results on COIFT [10] dataset.



Image DEXTR TOS-Net (ours) Ground truth

Figure 9: Qualitative results on HRSOD [15] dataset.


