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1. Overview
In this supplementary, we first present the network ar-

chitecture in Sec 2. In Sec 3, we studied the impact of dif-
ferent attention fusion stages. The qualitative result of the
Cityscape dataset is available in Sec 4. We justify our hy-
pothesis why the improvement over supervised Cityscape is
limited in Sec 5. More qualitative result are provided in the
remaining sections.

2. Architecture and Implementation
To be comparable with previous methods [3, 4, 8], we

use 256×256 images for the unsupervised Cityscape trans-
lation and all object and scenery tasks, and 128 × 128 im-
ages for the supervised Cityscape translation. We applied
our method on the CycleGAN [8] for all unsupervised trans-
lation tasks. In other words, we adopt the network architec-
ture of CycleGAN as the backbone of our proposed model.
In specific, we adopted the ResNet 9-blocks [2] generator
and the PatchGAN [4] discriminator. This generator con-
tains 2 down-sampling blocks, 9 residual blocks and 2 up-
sampling blocks. For the supervised translation, we adopted
the UNet-128 [6] generator and a same PatchGAN discrim-
inator. The PatchGAN discriminator is composed of 5 con-
volution layers, including normalization and ReLU layers.

Before diving into the detail of our modified discrimina-
tor, let us first describe TAM’s 2-branch architecture [7] in
detail. They built a very deep network with numbers of at-
tention blocks. Each attention block contains two branches:
mask branch and trunk branch. Mask branch cascades the
input features through a bottom-up top-down architecture
that mimics human attention. Trunk branch is applied as
feature processing. To build a TAM discriminator with this
2-branch architecture, we replaced the ResBlock by a simple
convolution layer. Please note that more parameters com-
monly means more powerful network and the discrimina-
tor is already too strong comparing to the generator, so we
have to deduce the capacity of the discriminator. In such
TAM discriminator, we use the first convolution layer as

Method F0 F1 F2 F3 F4
H → Z 1.03 ± 0.35 1.07 ± 0.41 1.29 ± 0.51 1.47 ± 0.61 1.04 ± 0.63
Z → H 3.42 ± 0.51 3.42 ± 0.65 3.46 ± 0.60 3.88 ± 0.66 3.63 ± 0.68

Table 1. Target KID for different fusion stages on horse2zebra. F0:
early fusion; F1: fusion before the down-sampling; F2: fusion
after the down-sampling; F3: fusion at the end of 4th residual
block; F4: fusion at the end of 9th residual block;

feature extractor, three consecutive convolution layers for
trunk branch and the last one convolution layer for classifi-
cation. The mask branch is composed of two downsampling
layers, two convolution layers and one upsampling layer.

Similar to prior works, we applied Instance Normaliza-
tion (IN) for both generators and discriminators. In the pre-
processing step, we resized the input image to 286 × 286
(143 × 143) then randomly cropping back to 256 × 256
(128 × 128). For all the unsupervised experiments, we set
the weight factor of the GAN loss to 1, λGAN = 1, and the
weight factor of cycle consistency to 10, λCyc = 10, in our
objective. On the other hands, we set the weight factor of
the GAN loss to 1, λGAN = 1, and the weight of L1 loss to
10, λL1 = 100.

3. Attention Fusion Strategies

Noted that we blend the attention mask and the raw input
before feed them into the generator. However, in the com-
munity, late-fusion seems to be the preferred choice (blend
the attention map and input feature in the hidden space). In
this section, we provide an ablation study for where to place
the attention.

The result is presented in Table 1. It’s easy to see that the
Target FID score (Since we are doing an object translation
task) doesn’t change much when we plugin the attention
map elsewhere. Thus we chose early fusion in our experi-
ments.



4. Qualitative Results for Cityscape
The qualitative result of unsupervised Cityscape transla-

tion is presented in Figure 1 and Figure 2. Noted that the
classical GAN model [1] is suffered from model collapse,
which means it maps all the input to a same image. Another
interesting observation is that even FAL [3] generates sharp
looking images, the content is not fully correct. For exam-
ple, look at the first row in Figure 2, the car segmentation
(blue region) covers too much area compared to the ground
truth.

5. Hypothesis Justification
In this section, we empirically justify our hypothesis on

why we have the improvement over per-class accuracy and
IoU are marginal. We conduct two additional experiments
and analyze their results. Firstly, we compute the per-class
statistic across the whole dataset. Figure 3 shows the statis-
tic frequency of each class, which denotes the number of
images (in percentage) that contain at least one specific ob-
ject. For example, the building appears almost every image
while less than 5% of images contain trains.

In Figure 4, we further provide the per-class average fre-
quency that describes the average number of specific ob-
jects that appear per image. For instance, the bar plot told
us that an image contains about 10 cars and 2.5 buildings
on average. Such statistic information justifies our second
hypothesis that some classes merely appear in the dataset.
Thus the further improvement over per-class accuracy and
IoU are prohibited (e.g. bus and train).

We then compute the attention intensity of each class
during training. The result is presented in Figure 5. The at-
tention intensity is defined as the number of pixels that have
attention larger than a given threshold α (We use α = 0.5 in
this experiment). In other words, we assume a pixel is cru-
cial if its corresponding attention value is larger than α. We
propose that a specific class is aware by the discriminator if
at least 50% of its pixel is crucial. For example, a 128×128
image contains 512 car pixels, then car is attended if at least
256 pixels have attention value greater than α.

Based on the figure, we discover that the discriminator
may focus on some small classes (e.g. rider and terrain).
The per-class accuracy and IoU are affected if the genera-
tor tries too hard to fix those classes but ignore the major
part. Based on the number of instances of each class, the
contribution of generating good riders is significantly less
than the contribution of generating good cars. This experi-
ment justifies our first suggestion that only few classes are
highlighted in the attention map.

6. Attention Map during Training
We present some intermediate results with its attention

map in Figure 6, Figure 7 and Figure 8. The white area in

the attention map indicates that region is important. Please
note that the attention map focuses on the target object in
the early training stage while it will focus on some small
regions later. This scenario is consistent with the attention
behavior in AGGAN [5].

7. More Translation Results
More translation results are provided in Figure 9, Figure

10, Figure 11 and Figure 12, 13.
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Figure 1. Different unsupervised translation methods for labels↔photos mapping, trained on Cityscape images.

Figure 2. Different supervised translation methods for labels↔photos mapping, trained on Cityscape images.
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Figure 3. The statistic frequency for all 16 classes appeared in the Cityscape translation.
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Figure 4. The average frequency for all 16 classes appeared in the Cityscape translation.



Figure 5. The average per-class attention intensity during training, in epochs 20, 40, 60.
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Figure 6. Inputs, outputs and corresponding attention maps at training epoch 10. Left: attention map generated by PHA; Right: attention
map generated by TAM.
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Figure 7. Inputs, outputs and corresponding attention maps at training epoch 50. Left: attention map generated by PHA; Right: attention
map generated by TAM.
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Figure 8. Inputs, outputs and corresponding attention maps at training epoch 100. Left: attention map generated by PHA; Right: attention
map generated by TAM.



Source Ours CycleGAN StarGAN UNIT AGGAN

Figure 9. Image-to-Image translation results generated by different approaches on object translation and scenery translation. Every two
rows from top: apple↔orange, zebra↔horse, night↔day and winter↔summer. More result is available in the supplementary



Figure 10. Additional translation results on day2night dataset. From left to right: real daytime images, fake night images, real night images,
fake daytime images.

Figure 11. Additional translation results on apple2orange dataset. From left to right: real apple images, fake orange images, real orange
images, fake apple images.



Figure 12. Additional translation results on horse2zebra dataset. From left to right: real horse images, fake zebra images, real zebra images,
fake horse images.

Figure 13. Additional translation results on winter2summer dataset. From left to right: real winter images, fake summer images, real
summer images, fake winter images.


