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In this supplementary document, we first give the detailed information of our architectures in Section 1. We then discuss
the convergence of our models under different configurations in Section 2. In Section 3, we provide the details of our ablation
study evaluating the performance of Convolutional Occupancy Networks (ConvONet) [5] with pre-defined 5 and 7 static
planes. In Section 4, we present per-category quantitative results and more qualitative results on ShapeNet [1] dataset.

1. Network Architectures
In this section, we provide additional details of our network architectures.

Encoder: The encoder of our networks is composed of a point cloud encoder and a plane predictor network. The architecture
of our encoder is illustrated in Fig. 1
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Figure 1. Encoder architecture. Our encoder is composed of a point cloud encoder (ResNet PointNet) and a plane predictor network.

• Point Cloud Encoder: We use the ResNet PointNet variant of [5], in which the pooling operation is performed locally.
The max-pooling operation is applied only over the features falling onto the same grid. We use 5 ResNet blocks to
obtain the per-point feature, as described in the supplementary of [5].

• Plane Predictor Network: The plane predictor network predicts the plane parameters of L dynamic planes by firstly
learning the global context of the input point clouds using the simple variant of PointNet network [6]. The information
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of N point clouds is encoded into one global feature and then passed into a sequence of fully-connected layer (FC)
blocks. We use 4 FC blocks and set a hidden dimension of 32 for the plane predictor network.

To predict the plane parameters, we pass the output from the FC blocks to L shallow networks consisting of 3
hidden dimensions, where the three numbers are the predicted plane parameters. The plane parameter predictions are
subsequently passed through L fully-connected networks with one layer and a hidden dimension D, which is the same
as the point cloud encoder’s hidden dimension to obtain the plane-specific features. Each plane-specific feature is then
expanded from 1×D to N ×D, and added to the output of point cloud encoder individually before processing into
U-Net.

U-Net: We use a U-Net [7] to process the plane features and adapt a modified implementation from [5]. We set the input
and output feature dimensions to 32 and choose the depth of the U-Net such that the receptive field is equal to the size of the
feature plane. In doing so, we set a depth of 4 for our experiments with ShapeNet dataset (642 grids) and a depth of 5 for our
scene experiments (1282 grids).

Decoder: We use the decoder networks of [4] with 5 ResNet blocks and a hidden dimension of 32.

2. Convergence
In this section, we present the effect of positional encoding and the higher number of dynamic planes on the training

convergence.

Positional encoding: We use the convolutional occupancy networks implementation of [5] and compare their validation IoU
progression with and without positional encoding. As seen in Fig. 2, we observe consistency that the models trained with
positional encoding converge faster. It applies in both the object-level experiment using ShapeNet dataset and the scene-level
experiment using the synthetic indoor scene dataset.

Higher number of dynamic planes: Fixing the use of positional encoding, we also compare the convergence of our models
with 3, 5, and 7 dynamic planes, as illustrated in Fig. 2. The faster convergence is pronounced in the scene experiment when
increasing the number of dynamic planes from 3 to 5.
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Figure 2. Training progression. The progression of validation IoU showing the effect of positional encoding and the higher number of
dynamic planes on the training convergence. Left: ShapeNet. Right: Scene dataset.

3. Ablation study
In this section, we test the performance of ConvONet [5] with pre-defined 5 and 7 static planes to verify the effectiveness of

our method. On top of the three canonical planes, we experiment with additional arbitrarily chosen sets of planes and flipping
sets of planes following the prediction of our networks. We use the planar projection detailed in Section 3 of the main paper
to project the per-point features to the 2D static planes. For the experiments with seven planes, we select the seventh plane
normal rather arbitrarily as (1, 1, 1). All models are trained until at least 900,000 iterations.



The results are shown in Table 1. When arbitrary planes are chosen, the performance is worse than following the prediction
from our networks to include flipping sets of normals. We also see that ConvONet has limited capacity in capturing richer
information from increasing the number of static planes. As we can see in Table 1 and the object-level results in Section 4 of
the main paper, increasing the number of static planes mostly does not improve and even degrade the performance compared
to using three canonical planes. Moreover, the results from our method are consistently superior, given the same number of
planes. This ablation study further verifies the benefit of our method in jointly learning dynamic planes to predict the best
planes for reconstruction and plane-specific features to increase the model capacity.

Without positional encoding
Pre-defined plane normal IoU Chamfer- Normal F-score

L1 C.
Canonical planes Additional arbitrary set

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 0, 1) (0, 1, 1) - - 0.878 0.047 0.936 0.936
(1, 0, 1) (0, 1, 1) (1, 1, 1) (−1, 1, 1) 0.880 0.045 0.937 0.941

Additional flipping set
(−1, 0, 0) (0,−1, 0) - - 0.880 0.046 0.937 0.939
(−1, 0, 0) (0,−1, 0) (0, 0,−1) (1, 1, 1) 0.883 0.045 0.937 0.941

With positional encoding
Pre-defined plane normal IoU Chamfer- Normal F-score

L1 C.
Canonical planes Additional arbitrary set

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 0, 1) (0, 1, 1) - - 0.885 0.045 0.939 0.942
(1, 0, 1) (0, 1, 1) (1, 1, 1) (−1, 1, 1) 0.885 0.045 0.938 0.941

Additional flipping set
(−1, 0, 0) (0,−1, 0) - - 0.890 0.044 0.940 0.945
(−1, 0, 0) (0,−1, 0) (0, 0,−1) (1, 1, 1) 0.889 0.043 0.939 0.946

Table 1. Ablation study results. We compare the performance of ConvONet [5] with pre-defined 5 and 7 static planes. When arbitrary
planes are chosen, the performance is worse than following the prediction from our networks to include flipping sets of normals.

4. 3D Reconstruction on ShapeNet
In this section, we provide the per-category quantitative and additional qualitative results on the ShapeNet subset of Choy et

al. [2].

Observations: Table 2 shows a quantitative comparison between ConvONet [5] and ours. Our models consistently outperform
ConvONet [5] in all metrics. The most considerable improvement is observed from the challenging class lamp. Moreover, we
see progressive improvement using a higher number of dynamic planes for our models.

The qualitative comparison is presented in Fig. 3, where we show the reconstruction of objects with intricate structures.
Qualitatively, our models are able to preserve geometric details better compared to ConvONet [5]. The use of higher dynamic
planes is also shown to improve reconstruction accuracy, especially in capturing intricate geometrical details, such as thin
components and holes. For example, in the first row of Fig. 3, only our models with 5 and 7 dynamic planes are seen to
reconstruct the phone’s antenna accurately.



IoU Chamfer-L1

Without PE With PE Without PE With PE
ConvONet ConvOnet Ours Ours Ours ConvONet ConvOnet Ours Ours Ours

Category (3C) (3C) (3D) (5D) (7D) (3C) (3C) (3D) (5D) (7D)
airplane 0.847 0.859 0.865 0.862 0.866 0.034 0.032 0.031 0.031 0.031
bench 0.834 0.837 0.845 0.845 0.847 0.035 0.035 0.034 0.034 0.033
cabinet 0.938 0.942 0.941 0.942 0.943 0.048 0.046 0.047 0.047 0.045
car 0.887 0.889 0.891 0.894 0.894 0.073 0.073 0.072 0.071 0.069
chair 0.872 0.873 0.878 0.882 0.883 0.047 0.045 0.045 0.044 0.044
display 0.928 0.931 0.931 0.933 0.934 0.037 0.036 0.036 0.036 0.035
lamp 0.779 0.789 0.800 0.806 0.807 0.060 0.059 0.057 0.054 0.055
loudspeaker 0.914 0.919 0.921 0.921 0.921 0.065 0.062 0.063 0.063 0.061
rifle 0.844 0.853 0.858 0.859 0.859 0.029 0.027 0.026 0.026 0.026
sofa 0.937 0.939 0.941 0.941 0.942 0.042 0.041 0.041 0.041 0.040
table 0.888 0.893 0.898 0.898 0.898 0.040 0.039 0.038 0.038 0.038
telephone 0.954 0.956 0.955 0.956 0.956 0.028 0.027 0.028 0.027 0.027
vessel 0.867 0.873 0.877 0.879 0.883 0.043 0.041 0.041 0.040 0.038
mean 0.884 0.889 0.892 0.894 0.895 0.045 0.043 0.043 0.042 0.042

Normal Consistency F-Score
airplane 0.930 0.932 0.934 0.934 0.934 0.966 0.970 0.972 0.973 0.973
bench 0.920 0.922 0.924 0.924 0.924 0.966 0.968 0.970 0.971 0.972
cabinet 0.955 0.956 0.957 0.958 0.957 0.954 0.957 0.957 0.957 0.959
car 0.892 0.892 0.894 0.896 0.896 0.856 0.857 0.857 0.864 0.867
chair 0.942 0.942 0.944 0.945 0.946 0.939 0.939 0.943 0.948 0.950
display 0.968 0.968 0.969 0.970 0.970 0.972 0.974 0.975 0.976 0.978
lamp 0.899 0.901 0.905 0.908 0.906 0.890 0.895 0.904 0.910 0.911
loudspeaker 0.935 0.939 0.939 0.940 0.938 0.888 0.896 0.894 0.897 0.897
rifle 0.931 0.929 0.934 0.933 0.931 0.980 0.981 0.983 0.983 0.986
sofa 0.957 0.958 0.960 0.959 0.960 0.953 0.955 0.957 0.958 0.959
table 0.958 0.959 0.961 0.961 0.961 0.966 0.969 0.972 0.973 0.973
telephone 0.982 0.982 0.983 0.983 0.983 0.988 0.988 0.989 0.990 0.990
vessel 0.919 0.919 0.923 0.924 0.924 0.935 0.937 0.938 0.943 0.948
mean 0.938 0.938 0.940 0.941 0.941 0.943 0.945 0.947 0.950 0.951

PE = positional encoding. C = canonical planes. D = dynamic planes.

Table 2. Object-level 3D reconstruction from point clouds. This table shows the detailed per-category results on ShapeNet dataset
comparing ours and ConvONet [5].
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Figure 3. Qualitative comparison of object-level reconstruction from point clouds. We selectively choose the objects with intricate
geometric details, such as thin components and holes.
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