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In this supplementary material, we provide further anal-
ysis on our model and show more quantitative results on
other dataset. More qualitative results are also provided.
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Table 1: Configuration of Snake Module. Three snake

modules with circular convolution are employed for our
DANCE model. Note that the first row corresponds to M6
from Table 1 in our main paper while the second row de-
notes the lightweight variant, which we call ‘snake-S’.

1. Model Efficiency
In the main paper, we have shown that the model effi-

ciency can be improved by adopting a lighter detector and
snake modules with progressively reduced layers (“Real-
time Setting” in Section 4.3). Here, we provide the imple-
mentation details of our deformation module.

In particular, the snake module inherits the design of
[8], consisting of 8 “CirConv-BN-ReLU” layers with resid-
ual connections, followed by a fusion block for features
fusion and a prediction head that outputs per-vertex offset
vectors. In our default setting, the feature dimension of
the snake module is set to 128, and the atrous rate of each
CirConv is set to (1, 1, 1, 1, 2, 2, 4, 4). To improve the effi-
ciency, we employed a lighter version of snake, which we
call ‘snake-S’ (Table 1), and the results demonstrate that
the inference time can be further reduced by 12 ms (∼ 15%)
with a slight performance drop (0.2% AP, ∼ 0.6%).
∗Authors contributed equally.
†This work was mainly done during an internship at Shopee Data Sci-

ence.

34.01

34.18 34.37
34.15

Figure 1: Analysis on the Number of Snake Modules.
“snake-S-4” denotes that one additional snake module is
added for training. We evaluated the performance using dif-
ferent number of snake modules for testing. The results are
evaluated on COCO val.

Finally, when combined with a lighter detector, we ob-
tained a real-time version of DANCE, called DANCE-RT.
Please refer to our main paper for more details.

2. Effects of Number of Snake Modules

We also analyzed the effect of different numbers of
snake modules on segmentation accuracy. As shown in
Figure 1, a large portion of AP increase comes from the
early stages of deformation, where the initial bounding box
is transformed into a rough object shape. There is dimin-
ishing return when adding more snake modules, of which
four or above could not bring significant performance gain.



training data fps APval AP AP50 person rider car truck bus train mcycle bcycle
Mask R-CNN [3] fine 2.2 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

PANet [5] fine < 1 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8
Spatial [6] fine 11 - 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9

DeepSnake [8] fine 4.6 37.4 31.7 58.4 37.2 27.0 56.0 29.5 40.5 28.2 19.0 16.4
DeepSnake∗ fine 6.1 37.0 - - - - - - - - - -

DANCE fine 6.3 36.7 31.2 57.7 38.1 27.3 54.0 27.5 37.4 27.7 21.6 16.2

Table 2: Quantitative Results on Cityscapes Validation and Test Set. DeepSnake∗ denotes the best of
our reproduced model over five training rounds using the officially released code [7]. The speed of the
pretrained DeepSnake and our method is measured using a single V100 GPU on the same machine. Due to
limited submission to the evaluation server, we are unable to submit our reproduced DeepSnake model for
evaluation on the test set.

3. More Results with Cityscapes Dataset
Due to space limitation, we only reported the results of

DANCE on COCO [4] and SBD [2] datasets in the main
paper. Here, we also report the results on the Cityscapes
[1] dataset. It is a high resolution segmentation dataset with
2,975 training, 500 validation and 1,525 testing images. We
only use the fine annotations with eight semantic classes for
training, and evaluate the results in terms of average preci-
sion.

For fair comparison with DeepSnake [8], we employed
the same backbone (DLA-34 [10]) and detector (Center-
Net [11]). We followed the same training configurations.
Specifically, multi-scale and random flip data augmentation
is used during training, and a single resolution of 1216 ×
2432 is used for testing without any test time augmentation.
Stage-wise training is applied to first train the detector alone
for 140 epochs, with learning rate starting from 1e−4 and
dropping by half at 80th and 120th epoch. For the second
stage, both the DANCE deformation heads and the detector
are jointly trained for another 200 epochs, where the learn-
ing rate starts from 1e−4 and drops by half at 80th, 120th and
150th epoch. We follow [8] by adopting multi-component
detection strategy to deal with fragmented instances.

As shown in Table 2, our model performs comparably
with DeepSnake while being slightly faster. Unlike COCO
and SBD, we notice that the speed advantage is not as ob-
vious because images from Cityscapes are of much higher
resolution, thus requiring more processing time for edge at-
tention computation. As compared to DeepSnake, we can
see that our DANCE performs better on classes with com-
plex shape, such as person, rider and motorcycle, demon-
strating its effectiveness in handling sophisticated shape.

4. More Qualitative Results on COCO
In addition to Figure 7 in our main paper, we present

more qualitative comparison between our DANCE model
and Mask R-CNN [3] in Figure 2. In general, we can see
that our DANCE model produces good quality segmenta-

tion. In the case where the object is huge (e.g., the airplane
in the last row), we can see the 28 × 28 RoI is insufficient
to recover the instance mask via up-sampling, while our
contour-based representation produces sharp boundaries.
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Figure 2: More Qualitative Results on COCO. We compare the results of our R-101-based DANCE model with R-101-
based Mask R-CNN [3]. Note that the Mask R-CNN model is pre-trained by [9] using 3× schedule.
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