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Abstract

Much of the focus in the object detection literature has
been on the problem of identifying the bounding box of a
particular class of object in an image. Yet, in contexts such
as robotics and augmented reality, it is often necessary to
find a specific object instance—a unique toy or a custom in-
dustrial part for example—rather than a generic object class.
Here, applications can require a rapid shift from one object
instance to another, thus requiring fast turnaround which
affords little-to-no training time. What is more, gathering a
dataset and training a model for every new object instance to
be detected can be an expensive and time-consuming process.
In this context, we propose a generic 2D object instance de-
tection approach that uses example viewpoints of the target
object at test time to retrieve its 2D location in RGB images,
without requiring any additional training (i.e. fine-tuning)
step. To this end, we present an end-to-end architecture that
extracts global and local information of the object from its
viewpoints. The global information is used to tune early
filters in the backbone while local viewpoints are correlated
with the input image. Our method offers an improvement of
almost 30 mAP over the previous template matching methods
on the challenging Occluded Linemod [3] dataset (overall
mAP of 50.7). Our experiments also show that our single
generic model (not trained on any of the test objects) yields
detection results that are on par with approaches that are
trained specifically on the target objects.

1. Introduction
Object detection is one of the key problems in computer

vision. While there has been significant effort and progress
in detecting generic object classes (e.g. detect all the phones
in an image), comparatively little attention has been devoted
to detect specific object instances (e.g. detect this particular
phone model). Recent approaches on this topic [30, 41, 44,
22] have achieved very good performance in detecting object
instances, even under challenging occlusions. By relying on
textured 3D models as a way to specify the object instances
to be detected, these methods propose to train detectors

Figure 1: Overview of the proposed method. At test time,
our network predicts the 2D location (in an RGB image)
of a target object (unseen during training) represented by
templates acquired from various viewpoints.

tailored for these objects. Because they know the objects
to be detected at training time, these approaches essentially
overfit to the objects themselves: they become specialized at
detecting them (and only them).

While this is a promising and active research direction,
requiring knowledge of the objects to be detected at training
time might not always be practical. For instance, if a new
object needs to be detected, the entire training process must
be started over. This implies first generating a full training
dataset and then optimizing the network. Also, using a single
network per object can be a severe constraint in embedded
applications where memory is a limited resource.

In this work, we explore the case of training a generic 2D
instance detector, where the specific object instance to be
detected is only known at test time. The object to be found is
represented by a set of images of that object captured from
different viewpoints (fig. 1). In order to simplify the data
capture setup and to facilitate comparisons to previous work
on standard datasets, in this work we employ 3D models
of the test objects and render different viewpoints. If a
3D model is not accessible, it would be possible to instead
capture a few viewpoints of the object on a plain background.

This paper is akin to a line of work which has received
somewhat less attention recently, that of template match-



ing. These techniques scan the image over a dense set of
sub-windows and compare each of them with a template rep-
resenting the object. A canonical example is Linemod [12],
which detects a 3D object by treating several views of the
object as templates, and by efficiently searching for matches
over the image. While very efficient, traditional template
matching techniques can be quite brittle, especially under
occlusion, and yield large amounts of false positives.

In this paper, we revive this line of work and propose a
novel instance detection method. Using a philosophy shar-
ing resemblance to meta-learning [39], our method uses a
large-scale 3D object dataset and a rendering pipeline to
learn a versatile template representation. At test time, our
approach takes as input multiple viewpoints of any object
and detects it from a single RGB image immediately, without
any additional training (fig. 1).

Our main contribution is the design of a novel deep learn-
ing architecture which can localize instances of a target
object from a set of input templates. Instead of matching
pixel intensities directly such as other template matching
methods, our network is trained to localize an instance from
a joint embedding space. Our approach is trained exclusively
on synthetic data and operates by using a single RGB image
as input. In addition, we introduce a series of extensions to
the architecture which improve the detection performance
such as tunable filters to adapt the feature extraction pro-
cess to the object instance in the early layers of a pretrained
backbone. We quantify the contribution of each extension
through a detailed ablation study. Finally, we present ex-
tensive experiments that demonstrate that our method can
successfully detect object instances that were not seen during
training. In particular, we report performances that signif-
icantly outperform the state-of-the-art on the well-known
Occluded Linemod [3] dataset. Notably, we attain a mAP
of 50.71%, which is almost 30% better than LINE-2D [12]
and on par with methods that overfit on the object instance
during training.

2. Related work
Our work is most related to two areas: object instance

detection in RGB images, and 2D tracking in RGB images.

Object instance detection. Our work focuses on retriev-
ing the 2D bounding box of a particular object instance.
This is in contrast with well-known methods such as Faster-
RCNN [32] and SSD [26] or with methods that bear more
resemblance to our approach such as CoAE [19], which all
provide 2D locations of object classes. Detecting a specific
object is challenging due to the large variety of objects that
can be found in the wild. Descriptor-based and template-
based methods are useful in such context. Generic features
such as gradient histograms [12] and color histograms [35]
can be computed and then retrieved from an object code-
book.

Recent progress in deep learning enabled the commu-
nity to develop approaches that automatically learn fea-
tures from the 3D model of an object using neural net-
work [30, 41, 44, 22] or random forest [4] classifiers. While
these methods perform exceptionally well on known bench-
marks [17], they share the important limitation that training
these deep neural networks requires a huge amount of labeled
data tailored to the object instances to be detected. Conse-
quently, gathering the training dataset for specific objects is
both costly and time-consuming. Despite this, efforts have
been made to capture such real datasets [3, 13, 16, 33, 7, 34]
and to combine them together [17]. A side effect is that
it confines most deep learning methods to the very limited
set of objects present in these datasets, as the weights of a
network are specifically tuned to detect only a single [22]
or a few instances [22, 30]. The difficulty of gathering a
real dataset can be partially alleviated using simple render-
ing techniques [14, 22, 30] combined with data augmenta-
tion such as random backgrounds and domain randomiza-
tion [36, 43, 37], but still suffers from a domain gap with real
images. Recently, Hodan et al. [18] demonstrated that the
domain gap can be minimized with physics-based rendering.
Despite this progress, all of the above methods share the
same limitation, in that they all require significant time (and
compute power) to train a network on a new object. This
implies a slow turn-around time, where a practitioner must
wait hours before a new object can be detected.

To circumvent these limitations, we propose a novel
generic network architecture that is trained to detect a target
object that is unavailable at training time. Our method is
trained on a large set of objects and can generalize to new,
different objects at test time. Our architecture bears resem-
blance to TDID [1] that uses a template to detect a particular
instance of an object. We show in our experiments that our
method performs significantly better than [1] on objects not
seen during training.

Tracking in 2D images. Our work shares architectural
similarities with 2D image-based tracking, for which ap-
proaches use a template of the object as input, typically
identified as a bounding box in the first frame of the video.
In contrast, we focus on single frame detection. Thus, we em-
ploy known viewpoints of the object acquired offline. Many
of these tracking approaches propose to use an in-network
cross-correlation operation (sometimes denoted as ?d) be-
tween a template and an image in feature space [40, 5, 23].
Additionally, recent 6-DOF trackers achieve generic in-
stance tracking using simple viewpoint renders from a 3D
model [9, 24, 27]. These methods are limited by the require-
ment of a previous temporal state in order to infer the current
position. Our method takes inspiration from these two lines
of work by first using the in-network cross-correlation and
second, our experiments show that using renders is sufficient
to locate a specific object instance from a single RGB image.
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Figure 2: Our proposed architecture, shown during training. In stage 1, the network learns to localize an object solely
from a set of templates. Object-specific features are learned by the “object attention” and “pose-specific” branches, and are
subsequently correlated/subtracted with the generic features of the backbone network. In stage 2, the network leverages the
learned representation to perform different tasks: binary segmentation, center and bounding box prediction.

3. Network architecture
We first introduce an overview of our proposed network

architecture, depicted in fig. 2. Then, we discuss the two
main stages of our architecture: 1) correlation and 2) object
detection. The correlation stage borrows from classical tem-
plate matching methods, where the template of an object is
compared to the query image in a sliding-window fashion.
The second stage is inspired from the recent literature in
class-based object detection.

3.1. Architecture overview
We design an architecture that receives knowledge of

the object as input, computes the template correlation as a
first stage, and regresses bounding boxes around the object
from the correlation results in a second stage. As shown
in fig. 2, the network takes as input the RGB query image
and two types of templates: 1) a global template used as an
object attention mechanism to specialize early features in the
backbone network; and 2) a local template that helps extract
viewpoint-related features. Each template is an RGB image
representing the rendered 3D object from a given viewpoint
on a black background, concatenated with its binary mask to
form four-channel images. The templates are obtained with
a fast OpenGL render of the object with diffuse reflectance,
ambient occlusion and lit by a combination of one overhead
directional light and constant ambient lighting.

3.2. Correlation stage
The query image is first processed by a conventional back-

bone to extract a latent feature representation. The global
template is fed to an “Object Attention Branch” (OAB),
whose task is to inject a set of tunable filters early into this
backbone network such that the features get specialized to
the particular object instance. On the other hand, the local
template is consumed by the “Pose-Specific Branch” (PSB)

to compute an embedding of the object. The resulting fea-
tures are then correlated with the backbone features using
simple cross-correlation operations. Note that at test time,
the backbone (85% of total computing) is processed only
once per instance, while the second stage is computed for
each template.

Backbone network. The role of the backbone network is
to extract meaningful features from the query image. For
this, we use a DenseNet121 [20] model pretrained on Ima-
geNet [6]. Importantly, this network is augmented by adding
a set of tunable filters between the first layer of the back-
bone (7× 7 convolution layer with stride 2) and the rest of
the model. These tunable filters are adjusted by the Object
Attention Branch, described below.

Object attention branch (OAB). It has been widely stud-
ied that using a pretrained backbone provides better features
initialization [29]. For a task related to template match-
ing, this however limits the feature extraction process to be
generic and not specialized early on to a particular instance
(e.g. it is not necessary to have a high activation on blue
objects if we are looking for a red object.). Thus, a special-
ized branch named “Object Attention Branch” (OAB) guides
the low-level feature extraction of the backbone network by
injecting high-level information pertaining to the object of
interest. The output of the OAB can be seen as tunable filters,
which are correlated with the feature map of the first layer
of the backbone network. The correlation is done within a
residual block, similarly to what is done in Residual Net-
works [11]. Our ablation study in sec. 5.3 demonstrate that
these tunable filters are instrumental in conferring to a fixed
backbone the ability to generalize to objects not seen during
training.

The OAB network is a SqueezeNet [21] pretrained on



ImageNet, selected for its relatively small memory footprint
and good performance. In order to receive a four-channel
input (RGB and binary mask), an extra channel is added to
the first convolution layer. The pretrained weights for the
first three channels are kept and the weights of the fourth
channel are initialized by the Kaiming method [10]. During
training, a different pose of the target object is sampled at
each iteration. For testing, a random pose is sampled once
and used on all test images.

Pose-specific branch (PSB). Since an object instance can
greatly vary depending on its viewpoint, a “pose-specific
branch” (PSB) is trained to produce a high-level representa-
tion (embeddings) of the input object under various poses.
This search, based on learned features, is accomplished by
depth-wise correlations and subtraction with 1 × 1 local
templates applied on the backbone output feature map. This
correlation/subtraction approach is inspired by [1], where
they have demonstrated an increased detection performance
when combining these two operations with 1×1 embeddings.
Siamese-based object trackers [2, 40] also use correlations,
but with embeddings of higher spatial resolution. We found
beneficial to merge these two concepts in our architecture,
by using depth-wise correlations (denoted as ?d) in both
1×1 and 3×3 spatial dimensions. The first one is devoid of
spatial information, whereas the second one preserves some
of the spatial relationships within a template. We conjecture
that this increases sensitivity to orientation, thus providing
some cues about the object pose.

This PSB branch has the same structure and weight ini-
tialization as the OAB, but is trained with its own specialized
weights. The output of that branch are two local template
embeddings: at 1×1 and 3×3 spatial resolution respectively.
Depth-wise correlations (1× 1 and 3× 3) and subtractions
(1×1) are applied between the embeddings generated by this
branch and the feature maps extracted from the backbone.
All of them are processed by subsequent 3× 3 convolutions
(C1–C3) and are then concatenated.

At test time, the object viewpoint is not known. Therefore,
a stack of templates from multiple viewpoints are provided
to the pose specific branch. Processing time can be saved
at runtime by computing the templates embeddings in an
offline phase. Note that the correlation between the local
templates and the extracted features is a fast operation and
can be easily applied in batch. The backbone network is only
processed once per object instance.

3.3. Object detection stage
The second stage of the network deals with estimating

object information from the learned correlation map. The
architecture comprises a main task (bounding box prediction)
and two auxiliary tasks (segmentation and center prediction).

Bounding box prediction. The bounding box classifica-
tion and regression tasks are used to predict the presence

and location of the object respectively (as in [25]). The clas-
sification head predicts the presence/absence of the object
for k anchors at every location of the feature map while the
regression head predicts a relative shift on the location (x, y)
and size (width, length) with respect to every anchor. In our
method, we have k = 24: 8 scales (30, 60, 90, 120, 150, 180,
210 and 240 pixels) and 3 different ratios (0.5, 1 and 2). Both
heads are implemented as 5-layer convolution branches [25].
Inspired from RetinaNet [25], anchors with an Intersection-
over-Union (IoU) of at least 0.5 are considered as positive
examples, while those with IoU lower than 0.4 are consid-
ered as negatives. The other anchors between 0.4 and 0.5
are not used. At test time, bounding box predictions for all
templates are accumulated and predictions with an (IoU) >
0.5 are filtered by Non-Maximum Suppression (NMS). Also,
for each bounding box prediction, a depth estimation can be
made by multiplying the depth at which the local template
was rendered with the size ratio between the local template
size (124 pixels) and the prediction size. Predictions that
have a predicted depth outside the chosen range of [0.4, 2.0]
meters, which is a range that fits to most tabletop settings,
are filtered out.

Segmentation and center prediction. The segmentation
head predicts a pixel-wise binary mask of the object in the
scene image at full resolution. The branch is composed of
5 convolution layers followed by 2× bilinear upsampling
layers. Additionally, the center prediction head predicts the
location of the object center at the same resolution than the
correlation map (29× 39) to encourage a strong correlation.
The correlation channels are compressed to a single channel
heatmap with a 1× 1 convolution layer.

Loss Functions. The network is trained end-to-end with a
main (bounding box detection) and two auxiliary (segmen-
tation and center prediction) tasks. As such, the training
loss `train = λ1`seg + λ2`center + `FL + `reg, where `seg is
a binary cross-entropy loss for segmentation, `center is an
L1 loss for the prediction of the object center in a heatmap,
`FL is a focal loss [25] associated with the object presence
classification and `reg is a smooth-L1 loss for bounding box
regression. The weights λ1, λ2 were empirically set to 20.

4. Training data
In this section, we detail all information related to the

input images (query and templates) during training. In par-
ticular, we define how the synthetic images are generated
and how the dataset is augmented.

4.1. Domain randomization training images
We rely on 125 different textured 3D models gathered in

majority from the various datasets of the 6D pose estimation
benchmark [17] (excluding Linemod [12] since it is used for
evaluation). Our fully-annotated training dataset is gener-
ated with a physic-based simulator similar to [28], for which
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Figure 3: Examples from our domain randomization training set. In (a), objects are randomly placed in front of the camera
and rendered using OpenGL with a background sampled from Sun3D dataset [42]. In (b) and (c), a physical simulation
is used to drop several objects on a table with randomized parameters (camera position, textures, lighting, materials and
anti-aliasing). For each render, 2 variations are saved: one with simple diffuse materials and without shadows (b), and one
with more sophisticated specular materials and shadows (c).

objects are randomly dropped on a table in a physical simula-
tion. Every simulation is done in a simple cubic room (four
walls, a floor and a ceiling) containing a table placed on the
floor in the middle of the room. Inspired from the success of
domain randomization [36, 37], we added randomness to the
simulation parameters in order to reduce the domain gap be-
tween synthetic and real images. The following parameters
are randomized: the texture of the environment (walls, floor
and table), lighting (placement, type, intensity and color),
object materials (diffuse and specular reflection coefficients)
and anti-aliasing (type and various parameters).

Renders. Our physics-based domain randomization
dataset is composed of 10,000 images. To generate these
images, we ran 250 different simulations with different sets
of objects (between 4 and 13 objects in each simulation). In
50% of the simulations, objects were automatically reposi-
tioned to rest on their bottom/main surface to replicate a bias
found in many tabletop datasets. For each simulation, 20
camera positions were randomly sampled on half-spheres of
radius ranging from 0.8 to 1.4 meters, all pointing towards
the table center with random offsets of ±15 degrees for each
rotation axis. For each sampled camera position, two im-
age variations were rendered: one with realistic parameters
(containing reflections and shadows) as shown in fig. 3-(c)
and the other without, as shown in fig. 3-(b). Tremblay et
al. [38] showed that using different kinds of synthetic images
reduced the performance gap between synthetic and real im-
ages. Accordingly, we have generated an additional set of
10,000 simpler renders using OpenGL. For this, we rendered
objects in random poses on top of real indoor backgrounds
sampled from the Sun3D dataset [42] (fig. 3-(a)).

Labels. After the simulations, we kept the 6 degree of
freedom pose of each object as the ground truth. We used
the pose together with the 3D model to generate a visibility
mask for the segmentation task, and projected the center
of the 3D model in the image plane to generate the center

heatmap. The ground-truth heatmap is a 2D Gaussian with
an amplitude of 1 and a variance of 5 at the projected center
of the object at an image resolution equivalent to the output
of the network.

4.2. Templates
The following section describes the template generation

procedure for training. We also remind the different proce-
dure used at test time, as described in sec. 3.2.

For each training iteration, one of the objects from the
query image is selected as the target object and all the others
are considered as background. All templates are rendered
with a resolution of 124× 124 pixels. To render consistent
templates from multiple objects of various size, we adjust
the distance of the object so that its largest length on the
image plane falls in the range of 100 to 115 pixels. The
borders are then padded to reach the size of 124× 124.

Global template (OAB): In an offline phase, 240 tem-
plates are generated for each 3D model by sampling 40
viewpoints on an icosahedron with 6 in-plane rotations per
viewpoint. During training, one of the 240 templates is sam-
pled randomly for each iteration. At test time, a single one
is randomly selected for all experiments.

Local template (PSB): We apply perturbations on the ori-
entation of the template image by sampling a random rotation
axis and rotation magnitude, and adding that perturbation to
the ground truth viewpoint before rendering the local tem-
plate. The impact of using different rotation magnitude is
quantified in table 2, with best performance obtained with
random rotations perturbation in the range of 20–30◦ to the
ground truth viewpoint. At test time, a stack of 160 templates
rendered from 16 viewpoints is used.

4.3. Data augmentation
Online data augmentation is applied to synthetic images

during training. We use the segmentation mask of the object



in the query image to randomly change the hue, saturation
and brightness of the object and its template. We also apply
augmentations on the whole query image, such as: bright-
ness shifts, Gaussian blur and noise, horizontal and vertical
flips, random translations and scale. To minimize the risk
of overfitting to object color, a random hue is applied to the
whole image and the template 50% of the time. Finally, we
apply motion blur to the image 20% of the time by convolv-
ing a line kernel to the image, as in [8].

5. Experiments
In this section, we provide details on the training pro-

cedure and on the dataset and metrics used to evaluate our
approach. We also describe the various ablation studies that
validate our design choices. Finally, we present an extensive
evaluation against the state-of-the-art methods.

5.1. Training details
Our complete network is trained for 50 epochs with AMS-

Grad [31].We used a learning rate of 10−4 with steps of 0.1 at
epochs 20 and 40, a weight decay of 10−6 and mini batches
of size 6. We used 1k renders as a validation set and used
the remaining 19k of the generated dataset (OpenGL and
physics-based) for training. Each epoch, the network was
trained for 1,300 iterations and images are sampled with
a ratio of 80/20 respectively from the physics-based and
OpenGL renders. Once the training was complete, the net-
work with the smallest validation loss (computed at the end
of each epoch) was kept for testing.

5.2. Datasets and metrics
We evaluate on the well-known Linemod [13] and Oc-

cluded Linemod [3] datasets. Linemod consists of 15 se-
quences of real objects containing heavy clutter where the
annotations of a single object are available per sequence. Oc-
cluded Linemod is a subset of Linemod, where annotations
for 8 objects have been added by [3]. Keeping in line with
previous work, we only keep the prediction with the highest
score for each object and use the standard metrics listed be-
low. We use a subset containing 25% of the Linemod dataset
for the ablation studies.

Linemod. The standard metric for this dataset is the “2D
bounding box” metric proposed in [3]. The metric calculates
the ratio of images for which the predicted bounding box
has an intersection-over-union (IoU) with the ground truth
higher than 0.5.

Occluded Linemod. The standard mean average precision
(mAP) is used to evaluate the performance of multi-object
detection. To allow for direct comparison, we regroup the
predictions made for different objects and apply NMS on
predictions with an IoU > 0.5. We use the same method-
ology as in [3]: the methods are evaluated on 13 of the 15

Network ∆ performance (%)

w/o tunable filters (OAB) -19.76
w/o auxiliary tasks -7.73
w/o 3 × 3 correlation (PSB) -5.37

Table 1: Network architecture ablation study. Removing
tunable filters resulted in the most notable performance drop.

objects of the Linemod dataset (the “bowl” and “cup” ob-
jects are left out). Of the remaining 13 objects, 4 are never
found in the images, yet those are still detected and kept in
the evaluation (as an attempt to evaluate the robustness to
missing objects). The mAP is therefore computed by using
all the predictions on the 9 other objects left.

5.3. Ablation studies

Network architecture. We evaluate the importance of dif-
ferent architecture modules (presented in sec. 3). For each
test, a specific module is removed and its performance is
compared to the full architecture. Tab. 1 shows that remov-
ing the “Object Attention Branch” resulted in the largest
performance drop (almost 20%). Also, removing the higher-
resolution 3 × 3 embeddings and auxiliary tasks reduced
performances by approximately 5% and 8% respectively.

Importance of local template perturbation during train-
ing. A perfect match between the template pose and the
target object pose in the scene is unlikely. As such, the
training procedure must take this into account by adding
orientation perturbations to local templates at train time.
Here, we investigated what is the desirable magnitude of
such perturbations. In tab. 2, a random rotation of 0◦ rep-
resents local templates selected with the same orientation
as the object in the scene. Perturbations are then added
by randomly sampling a rotation axis (in spherical coordi-
nates) and a magnitude. A network was retrained for each
amount of perturbation. Tab. 2 illustrates that perturbations
of 20–30◦ seems to be optimal. Networks trained with too
small perturbations may not be able to detect objects under
all their possible configurations, resulting in small perfor-
mances drop of less than 5%, and those trained with too big
perturbations are more prone to false detections (the network
is trained to allow for bigger differences in appearance and
shape between the template and scene object), resulting in a
bigger drop of 16% for rotations of 180◦.

Number of local templates. The impact of providing var-
ious numbers of local templates to the network at test time
is evaluated, both in terms of accuracy and speed, in tab. 3.
Timings are reported on a Nvidia GeForce GTX 1080Ti. To
generate a varying number of templates, we first selected 16
pre-defined viewpoints spanning a half-sphere on top of the
object. Each template subsequently underwent 5 (80 tem-
plates), 10 (160 templates) and 20 (320 templates) in-plane



Random rotations ∆ performance (%)

0◦ -4.33
± 10◦ -3.12
± 20◦ 0
± 30◦ -0.42
± 40◦ -5.18
± 180◦ -16.07

Table 2: Impact of perturbing the pose of local templates
(instead of using the the ground truth pose) during training.

# of templates ∆ performance (%) runtime (ms)

80 -2.80 230
160 0.00 430
320 +0.03 870

1 (oracle) +16.75 60

Table 3: Bounding box detection performance and runtime
for various numbers of local templates at test time. The
oracle sets an upper bound of performance by providing a
single template with the ground truth object pose.

Global template selection ∆ performance (%)

Random Pose +1.21
Empty -32.47
Wrong Object -38.15

Table 4: Robustness towards different selection of global
templates at test time.

rotations. Tab. 3 compares performances with that obtained
with an oracle who provided a template with the ground truth
object pose. Overall, performance ceases to improve beyond
160 templates.

Global template selection. In tab. 4, we show that the
object pose of the global template does not impact signifi-
cantly the detection performance. For the first test, we report
the average performance of 5 different evaluations in which
a random global template was selected. The performance
slightly improved compared to the random template used in
all other tests, suggesting that the template selection in every
other test was suboptimal. However, it also shows that the
templates were not cherry-picked for optimal performance
on the test datasets. Secondly, we show that using a template
of the good object is primordial. Using empty templates (all
0’s) or providing templates from another object results in a
dramatic performance drop of more than 30%, thus hinting
about the discriminative power of the OAB.

Number of objects in the training set. The network was
retrained on subsets of objects of the synthetic dataset. The
remaining objects were considered as background clutter.

Figure 4: Qualitative results on the Occluded Linemod
dataset [3], showing good (green), false (blue) and missed
(red) detections. For reference, the 15 objects are shown in
the bottom row (image from [17]). To generate these results,
all objects (except objects 3 and 7) are searched in each
image.

# of objects ∆ performance (%)

15 -31.58
30 -15.97
63 -10.42
90 -3.58
125 0

Table 5: Impact of the number of objects used in training.

Tab. 5 shows the performance w.r.t the quantity of objects
used during training. While using few objects still performs
reasonably well, more objects does improve generalization.

Similar objects in the training set. While no single ob-
ject were present in both training and test sets, it is possible
that the training set contained objects that shared similarities
to objects in the test set. To evaluate the potential impact
this might have, we removed all cups from our training set
(13 were found), trained a network on the resulting set, and
evaluated its performance on the test set. Doing so reduced
the overall score by less than 1%, but the average perfor-
mance solely on cups slightly improved (not statistically
significant). This experiment demonstrates that the network
does not overfit on a particular class of instances.

5.4. Comparative evaluation to the state of the art
We report an evaluation on Linemod and Occluded

Linemod (OL) in tab. 6 and compare with other state-of-
the-art RGB-only methods. Competing methods are divided
into 2 main groups: those who do know the test objects at
train time (“known objects”), and those who do not. Ap-



Methods Known Real Linemod OL
objects images (2D BBox) (mAP)

Brachmann et al. [4] Yes Yes 97.50 51.00
SSD-6D [22] Yes No 99.40 38.00
DPOD [44] Yes No N/A 48.00
Hodan et al. [18] Yes No N/A 55.90*

Tjaden et al. [35] No Yes 78.50 N/A
LINE-2D [12] No No 86.50 21.0
TDID corrs. [1] No No 54.37 34.13
SiamMask corrs. [40] No No 68.23 41.47
Ours No No 77.92 50.71

Table 6: Quantitative comparison to the state of the art, with
2D bounding box metric on Linemod and mean average pre-
cision (mAP) on Occluded Linemod (OL). The 2D bounding
box metric calculates the recall for the 2D bounding boxes
with the highest prediction score. For both metrics, predic-
tions are considered good if the IoU of the prediction and the
ground truth is at least 0.5 (0.75 for Hodan et al. [18]). The
methods are separated first according to their prior knowl-
edge of test objects and then if real images similar to the test
set are used to optimize the performance. Our approach is
the most robust of all methods that were not trained for the
test objects, having a good score on Linemod and the best
score on Occluded Linemod.

proaches such as [4, 22, 44, 18] are all learning-based meth-
ods that were specifically trained on the objects. On the other
hand, [35, 12] and [1, 40] are respectively template matching
and learning-based methods that do not include a specific
training step targeted towards specific object instances. It
is worth noting that even though [35] is classified as not
needing known objects at training time, it still requires an
initialization phase using real images (to build a dictionary
of histogram features). As in [4], they thus use parts of the
Linemod dataset as a training set that covers most of the
object viewpoints. These methods have therefore an unfair
advantage compared to our approach and Line-2D, since
they leverage domain-specific information (lighting, camera,
background) of the evaluation dataset.

Our method is evaluated without prior knowledge of the
Linemod objects. It can be directly compared with Line-
2D [12] which also uses templates as input. On the standard
Linemod dataset, Line-2D outperforms our method by 8.5%
on the “2D bounding box” metric. The better results of Line-
2D on Linemod can be explained in part by an additional
and naive post-processing color-based check that rejects
false positives [4] while we report the performance of our
approach without any post-processing. We note that this
naive approach fails if minor occlusions occurs. In contrast,
our method outperforms Line-2D by almost 30% in mAP
on the more difficult Occluded Linemod. Our approach also
provides competitive performance that is on par or close to
all other methods that test on known objects and/or have

access to real images. Fig. 4 shows qualitative results on
Occluded Linemod. We also compare our approach with
TDID [1] and SiamMask [40]. We replaced their original
backbones by the same architecture (DenseNet) we are using.
As specified by those methods, a siamese backbone replaced
our 2 branches approach (OAB and PSB). TDID uses a
1 × 1 embedding whereas a 3 × 3 embedding is used for
SiamMask. All implementations were trained on the same
task following the same procedure than our approach and
their scores are reported in tab. 6. Overall, our proposed
approach significantly outperforms these two baselines.

6. Discussion
We have proposed a method for detecting specific object

instances in an image that does not require knowledge of the
object at training time. At test time, the proposed network
takes multiple viewpoints of the object as input, and predicts
the location of this object from a single RGB image. Our
experiments show that while the network has not been trained
with any of the test objects, it is significantly more robust
to occlusion than previous template-based methods (30%
improvement in mAP over Line-2D [12]). It is also highly
competitive with networks that are specifically trained on
the object instances. Numerous ablation studies show the
importance of each part of our proposed network.

Limitations. False positives arise from clutter with similar
color/shape as the object, as shown in fig. 4. We hypothesize
that our late correlation at small spatial resolution (templates
of 3× 3 and 1× 1) prevents the network from leveraging de-
tailed spatial information related to the object shape. Another
limitation is that the method requires 0.43s to detect a single
object instance in an image (c.f. tab. 3), scaling linearly with
the number of objects. The main reason for this is the object
attention branch (OAB), which makes the backbone features
instance-specific via tunable filters, which needs to be re-
computed for each object. Also, while capturing a 3D model
has become increasingly simpler ([15] show that it can be
done in less than 5 minutes with commodity hardware), this
may not always be practical. While our experiments rely on
such 3D models to allow for quantitative evaluation on stan-
dard datasets (e.g. Linemod) for which only the 3D model is
available, obtaining multiple viewpoints of an object could
also be done simply by photographing it against a uniform
background.

Future directions. By providing a generic and robust 2D
instance detection framework, this work opens the way for
new methods that can extract additional information about
the object, such as its full 6-DOF pose. We envision a
potential cascaded approach, which could first detect unseen
objects, and subsequently regress the object pose from a
high-resolution version of the detection window.
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