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Abstract

This document supplements our main paper entitled DB-

GAN: Boosting Object Recognition Under Strong Lighting

Conditions by 1.) providing further details on the dataset

that will be released together with our work and show ad-

ditional qualitative results for detection leveraging True-

Blue images. In addition, we 3.) provide more insights

on the GAN’s attitude with respect to color variation. In

the last section, 4.) we demonstrate the behaviour for the

SSD baseline and our proposed method with and without

pre-processing.

1. TrueBlue dataset

TrueBlue consists of 11 image sequences of 3 different

scenes, displaying daily household objects. Moreover, we

added distractor objects and also a MacBeth Color Checker

chart. The employed 3D models will also be made avail-

able.

Each scene was illuminated from above by a set of three

light sources of different types, e.g. LED, incandescent,

compact fluorescent, daylight and mixture of different

sources. For each scene, we acquired 11 images using a

Nikon D750 with Nikon 24-70mm f/2.8 lens at f/8 and ISO

100 with different white balance settings: 2500K, 2700K,

2940K, 3230K, 3570K, 4000K, 4550K, 5260K, 6250K,

7690K, 10000K respectively. The images are processed

in-camera to produce a JPEG image in Adobe RGB color
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Table 1. Illuminant types used in TrueBlue. LED: Light emit-

ting diode, CF: Compact fluorescent, INC: incandescent
Illuminant ID Type Description color temperature

1 LED Philips LED bulb 3000K

2 CF Carrefour CF bulb warm white

3 CF Walimex photo bulb day light

4 INC Osram 60W incandescent bulb n/a

5 sky 100% cloud cover mid-day sky n/a

space. The images were subsequently re-sampled to 1/4

original resolution using Sinc (lanczos) re-sampling in the

GIMP 2.8.16.

Table 1 lists the used illuminant types for acquiring of True-

Blue. Notice that compact fluorescent lights were switched

on for 10 minutes prior to acquisition to let them reach

steady state temperature.

The light sources included in this dataset were chosen

specifically to include near black body emitters (incan-

descent bulb), approximate broad spectrum (light emitting

diode), and narrow spectrum (compact fluorescent), as well

as natural light (cloudy sky).

TrueBlue has 3 different setups, i.e. arrangements of ob-

jects. Each setup always contains 4 objects with 3D model

and annotated 2D bounding box, and 2 additional distractor

objects. They are laid out in plain manner without induc-

ing occlusions, in an effort to focus on the white balance

sensitivity.

1.1. Qualitative Results

In Fig 1, 2 and 3 we illustrate additional qualitative re-

sults for both the SSD baseline and our proposed approach,

leveraging the GAN as pre-processor. It can be observed



Figure 1. Detections of the baseline SSD(top) and our approach with GAN pre-processing(bottom) on the 1st scene of the TrueBlue dataset.

The scene was recorded outdoor.

that when the input image is too blue or too red many ob-

jects are not indeed detected. The GAN pre-processing

seems to map input images more to the ’blue’ domain. In

practice, we observe that DB-GAN paints blue texture on



Figure 2. Detections of the baseline SSD(top) and our approach with GAN pre-processing(bottom) on the 2nd scene of the TrueBlue

dataset. The scene was recorded outdoor.

dark regions of the images and transform red regions into

light blue.



Figure 3. Detections of the baseline SSD(top) and our approach with GAN pre-processing(bottom) on the 11th scene of the TrueBlue

dataset. The scene was recorded outdoor.

2. TP/FP discussion

Fig 4 reports the average number of true positives and

false positives per object for the Toyota Light dataset. We

demonstrate our results for the SSD baseline, as well as our

enhanced SSD with and without GAN pre-processing GAN



Table 2. Scene descriptions of TrueBlue

Scene ID Type Illuminant IDs

001 uniform 1

002 uniform 1

003 uniform 2

004 uniform 3

005 uniform 4

006 mixed 2, 4, 2

007 mixed 3, 4, 3

008 mixed 3, 2, 3

009 mixed 2, 3, 2

010 mixed 1, 3, 1

011 uniform 5

Table 3. DB-GAN detector loss weight tuning study on the BOP

Toyota Light dataset.

λ5 mAP ↑

4 0.01 0.715

0.05 0.662

0.1 0.632

0.5 0.61

1 0.642

pre-processing at test time. Notice that, while the number

of true positive dramatically increases, the number of false

positives also rises when employing our method, regardless

pre-processing the input.
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Figure 4. Left: Average number of true positives per object us-

ing the baseline SSD, our approach with and without gan pre-

processing. Right: Same analysis for false positives. Results from

the Toyota Light dataset.

3. SSD loss weight tuning

In the main paper, we report all our results with respect

to the empirically found optimal value for the detector loss

weight λ5 is 0.01. We ran a grid-search over the parameter

space to find the best working value. The results from the

grid search are constituted in Table 3.

Figure 5. Examples of training images for the GAN. The input is

shown on the left and the output is visualised on the right. We ren-

der objects with simulated light onto PHOS background images.

Notice that the object is rendered with random ambient and direc-

tional light on the input and with static ambient and no directional

light on the output.

Table 4. DB-GAN results using two different background

datasets to generate the training images. The illumination nor-

malization task cannot be replaced by standard auto-encoding,

even if the background images have large texture variation.
GAN train background Auto-Encoder Toyota Light mAP ↑ TUD Light mAP ↑

PHOS × 0.71 0.66

PHOS X 0.33 0.12

VOC X 0.34 0.50

4. Experiments on using various background

datasets

First of all we want to show some examples of the images

we used to train our GAN architecture. See Figure

To verify that that the illumination normalisation task

contributes to the boost in performance, we tried rendering

the object models on Pascal VOC [1] images and trained

DB-GAN on the resulting data. Furthermore, we also tried

applying the trained GAN as pre-processor to our boosted

SSD at inference time. Table 4 shows the results of us-

ing only ‘correct exposure’ images from PHOS or VOC

background images to train the GAN, both in input and out-

put. Training DB-GAN as an auto-encoder decreases per-

formance on both datasets. This highlights one important

aspect of our method: the normalisation task contributes

to the performance increase and cannot be achieved by a

higher background diversity.

5. DB-GAN Pre-processing Results at test time

As mentioned in the main paper DB-GAN pre-

processing at test time suffers from a domain gap on the

Toyota Light dataset. Table 5 shows the results on perform-



Table 5. DB-GAN results with and without test time pre-

processing. On the TUD Light and TrueBlue datasets DB-GAN

preprocessing at test time yields increased performance.

Pre-processing TUD Light mAP ↑ TrueBlue mAP ↑

X 0.69 0.82

× 0.66 0.73

ing GAN pre-processing on test images for the 2D object

detection task. We can see that on the TUD Light and True-

Blue datasets pre-processing images at test time as well as

training time using our DB-GAN yield even better results,

showing the effectiveness of our approach.

6. Qualitative Comparison

Here we qualitatively compare the 5 different methods

reported in the paper on 2D object detection. We take the

Toyota Light dataset for this. Figure 6 shows the detected

objects (we use a detection threshold of 0.1 for all SSD in-

stances). We notice that, unlike existing approaches, our

method can recover a tight bounding box even with severe

low light(1st row), where other image enhancements meth-

ods fail. Furthermore, our approach tend to have a much

lower number of false positives and can deal with textured

(3rd row) as well as texture-less object (1-2 rows).
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SSD baseline DoG EnlightenGAN[2] RetinexNet [4] Deep Upe [3] Ours

Figure 6. 2D qualitation comparison between the 5 different version of SSD, trained of different pre-processing approaches. We can

see that our approach is able to fit tight bounding boxes on objects that are completely missed by the other approaches.


