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1. More Experiments
In this section, we provide results for additional exper-

iments that we ran to evaluate the performance of triplet
attention on other vision tasks adjacent to the main focus on
image classification and object detection in the paper.

In particular, we expand our Mask RCNN model to use
a keypoint detection head, as specified in [5], and evalu-
ate the existing Mask-RCNN model on the COCO instance
segmentation task. We also observe the effect of kernel size
k in the convolution operations within the triplet attention
module added to different standard architectures.

In addition, we provide more GradCAM [10] and Grad-
CAM++ [2] visualizations, and observe some interesting
patterns in the resulting heatmaps, which we discuss further
in Sec. 3.

2. Effect of kernel size k

Architecture Dataset k Param. FLOPs Top-1 (%)

ResNet-20 [6] CIFAR-10
3 0.270M 2.011G 92.66
5 0.271M 2.019G 92.71
7 0.272M 2.032G 92.91

VGG-16 + BN [11] CIFAR-10
3 15.254M 0.316G 91.73
5 15.255M 0.317G 92.05
7 15.256M 0.32G 92.33

ResNet-18 [6] ImageNet
3 11.69M 1.823G 70.33
7 11.69M 1.825G 71.09

ResNet-50 [6] ImageNet
3 25.558M 4.131G 76.12
7 25.562M 4.169G 77.48

MobileNetV2 [9] ImageNet
3 3.506M 0.322G 72.62
7 3.51M 0.327G 71.99

Table 1. Effect of kernel size k for triplet attention in standard
CNN architectures on CIFAR-10 [7] and ImageNet [3]. We ob-
serve a general trend of improvement in performance with increas-
ing kernel size aside from MobileNetV2.

∗Equal Contribution

We do baseline experiments to compare the effect of us-
ing different kernel sizes k in triplet attention and show our
results in Tab. 1. We conduct experiments on both CIFAR-
10 and ImageNet with different network architectures to
demonstrate the flexibility of the proposed triplet attention.
From Tab. 1, we observe a general trend of improvement in
performance with increasing kernel size. When deployed in
lighter-weight models, like MobileNetV2 [9], we observed
a smaller kernel to outperform its larger kernel counterpart
and thus overall have less complexity overhead.

3. GradCAM
In addition to the GradCAM results presented in the pa-

per, we observed many more instances of triplet attention
generating heatmaps that are consistently tighter or wider
when required and more meaningful. We use the same
method that we followed in the paper to obtain GradCAM
[10] and GradCAM++ [2] heatmap visualizations for the
ImageNet [3] test set images that we illustrate in Fig. 1.

The most interesting visualization is in the first exam-
ple (left image on the first row). The image shows two de-
vices - one that resembles a cassette player and an iPod.
While this image could potentially benefit from multiple la-
bels and bounding boxes, the class prescribed by the Ima-
geNet dataset is ”TapePlayer” (predicted correctly by triplet
attention) and not ”iPod” (the top class prediction from both
CBAM and the vanilla ResNet50). We speculate that the at-
tention maps in triplet attention help the model develop an
accurate estimate of global, long-range dependencies in the
image. Since the iPod is smaller, its distinct circular con-
trol pad coupled with the locality of the discrete convolution
operator employed by the ResNet architecture could poten-
tially mislead the network toward predicting the smaller,
more recognizable object.

The second example (right image on the first row) also
demonstrates an incorrect class prediction that can be at-
tributed to an inability to capture global features. All mod-
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Vanilla ResNet-50
Predicted Label -  iPod

Confidence Score – 50.65% 

ResNet-50 + CBAM
Predicted Label -  iPod

Confidence Score – 47.55% 

ResNet-50 + Triplet Attention
Predicted Label -  Tape Player

Confidence Score – 44.21% 

Vanilla ResNet-50
Predicted Label – Amphibious Vehicle

Confidence Score – 59.53% 

ResNet-50 + CBAM
Predicted Label -  Amphibious Vehicle

Confidence Score – 92.87% 

ResNet-50 + Triplet Attention
Predicted Label -  Amphibious Vehicle

Confidence Score – 99.71% 

Vanilla ResNet-50
Predicted Label – Water Snake

Confidence Score – 82.77% 

ResNet-50 + CBAM
Predicted Label – Water Snake

Confidence Score – 92.73% 

ResNet-50 + Triplet Attention
Predicted Label -  Water Snake

Confidence Score – 97.68% 

Vanilla ResNet-50
Predicted Label - Syringe

Confidence Score – 19.09% 

ResNet-50 + CBAM
Predicted Label -  Tripod

Confidence Score – 40.78% 

ResNet-50 + Triplet Attention
Predicted Label -  Power drill
Confidence Score – 39.97% 

Vanilla ResNet-50
Predicted Label – Crutch

Confidence Score – 97.45% 

ResNet-50 + CBAM
Predicted Label -  Crutch

Confidence Score – 97.89% 

ResNet-50 + Triplet Attention
Predicted Label -  Crutch

Confidence Score – 99.46% 

Vanilla ResNet-50
Predicted Label – Warplane
Confidence Score – 95.53% 

ResNet-50 + CBAM
Predicted Label – Warplane
Confidence Score – 94.98% 

ResNet-50 + Triplet Attention
Predicted Label -  Warplane
Confidence Score – 98.23% 

: Incorrect Prediction

Figure 1. Visualization of GradCAM and GradCAM++ results. The results were obtained for six random samples from the ImageNet
validation set and were compared for a baseline ResNet-50, CBAM integrated ResNet-50 and a triplet attention integrated ResNet-50
architecture. Ground truth (G.T) labels for the images are provided below the original samples and the networks prediction and confidence
scores are provided in the corresponding boxes.



Backbone Detectors AP AP50 AP75 APS APM APL

ResNet-50 [6]

Mask RCNN [5]

34.2 55.9 36.2 18.2 37.5 46.3
ResNet-50 + 1 NL block [12] 34.7 56.7 36.6 - - -
GCNet [4] 35.7 58.4 37.6 - - -
ResNet-50 + Triplet Attention (Ours) 35.8 57.8 38.1 18.0 38.1 50.7

Table 2. Instance Segmentation mAP (%) on MS-COCO : Triplet Attention results in higher performance gain with minimal computa-
tional overhead

Backbone Detectors AP AP50 AP75 APM APL

ResNet-50 [6]
Keypoint RCNN

63.9 86.4 69.3 59.4 72.4
ResNet-50 + CBAM [13] 64.8 85.5 70.9 60.3 72.8
ResNet-50 + Triplet Attention (Ours) 64.7 85.9 70.4 60.3 73.1

Table 3. Person Keypoints Detection baselines: Triplet Attention provides improvement over vanilla architecture and competitive results
as compared to the more complex CBAM incorporated model.

Backbone Detectors AP AP50 AP75 APS APM APL

ResNet-50 [6]
Keypoint RCNN

53.6 82.2 58.1 36 61.4 70.8
ResNet-50 + CBAM [13] 54.3 82.2 59.3 37.1 61.9 71.4
ResNet-50 + Triplet Attention (Ours) 54.8 83.1 59.9 37.4 61.9 72.1

Table 4. Object detection mAP(%) on the MS COCO validation set using the Keypoint RCNN. Triplet Attention results in consistent
higher performance gains across all the metrics.

els focus on a similar region of the image, but CBAM and
vanilla ResNet predict the wrong class with reasonably high
accuracy. Predicting power drill correctly for this image
likely requires a representation of the global context since
there seem to be few local features that can be associated
with that class label. The other heatmaps continue to sug-
gest that triplet attention produces tighter and more discrim-
inative bounds when appropriate, across a variety of image
classes.

4. COCO Instance Segmentation

The Mask RCNN architecture introduced in [5] produces
segmentation masks in addition to bounding boxes. We use
the Mask RCNN model augmented with our triplet atten-
tion layer, trained on the COCO 2017 dataset (as described
in section 4.3 of the main paper) to perform instance seg-
mentation, using the detectron2 code base [14]. We provide
our results of various AP scores in Tab. 2 along with re-
sults from other models that used similar training schemes.
On instance segmentation, triplet attention continues to pro-
vide a substantial improvement (nearly a 6% increase across
AP scores at negligible computational overhead) over the
baseline ResNet50 model and also outperforms other newer,
larger models like GCNet [1].

5. COCO Keypoint Detection

In addition to the other COCO segmentation and object
detection tasks, we further train the Mask RCNN model
on the COCO human keypoint detection task. The train-
ing configuration is similar to that we used for our Mask
RCNN model on the instance segmentation and object de-
tection tasks - we use the same 1x training schedule with
identical values for batch size, learning rate, et cetera. as we
did for our Mask RCNN model as well as the baseline [5].
For the keypoint detection head, the model generates 1500
proposals per image using the region proposal network im-
plemented in Faster RCNN [8], which is implemented as
the default configuration in detectron2 [14].

We provide a table of results comparing our Mask RCNN
based keypoint detector to the baseline implementation as
well as CBAM [13], another method that computationally
much more expensive yet obtains similar results. Tab. 3
provides the resulting AP scores for the keypoint annota-
tions on the COCO 2017 validation set. Tab. 4 provides
the AP scores for the bounding box annotations, which we
generate while training on the keypoint annotations.
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