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1. Overview

Figure 1. 1. The input is an incoherent sequence of meshes with independent topology. 2. Using shape similarity and abstraction proxies, a
combination of similarity and feasibility scores are used to select keyframes which approximate the optimum selection of frames that will
lead to successful pairwise registration across the sequence. 3. Between pairwise registrations, correspondences are found using volumetric
segmentation and geometry-aware correspondences which support the recovery of missing geometry and allows for user-defined editing. 4.
Using the correspondences, a deformation graph deforms the source mesh to the target. Detail synthesis is then performed to recover high-
frequency details and reduce keyframe ”popping” effects. 5. 3D motion smoothing is applied to further improve the temporal coherence
of the output tracked mesh sequence.



2. Implementation Details
The proposed system was implemented in C++ on Ubuntu 18.04.4 LTS on a laptop with an Intel i7-9750H CPU. On

average, our system solves for 20k vertices per mesh in 45s per sequential alignment in comparison to 60s for [3] and 30s
for [1]. While the proposed system does not outperform regarding speed, it is still competitive while producing significantly
better results as demonstrated in our experiments and video.

2.1. Keyframing

We modify the feasibility score of Collet et. al [2] as the following:

Si =
∑
c∈C(i)

(
1 + 2 ∗ (gmax − gc) +

Ac
2 ∗ (Amax + 1)

)
∗ λi (1)

Where Si is the feasibility score for frame i, C is the number of connected components and λi is the boundary weight which
discourages keyrames at region edges and is formulated similarly to an activation function where x is the number of frames
from the region boundary:

λi = 1− 1

1 + x2
(2)

Empirically we found that surface area has less impact on the effect of tracking for noisy input data, especially considering
that the proposed algorithm is designed to accommodate missing geometry. Genus has a significantly large impact on the
appearance of ”chewing gum” stretching artifacts which are still a major concern.

Guo et. al [3] use an L0-regularization to determine anchor frames, however, attempts to replicate this on real studio data
failed as their system requires a template mesh to initialize as well as relatively noise-free target meshes for tracking. For
these reasons we were unable to provide a similar analysis against their approach.

2.2. Correspondence Conditioning and Alignment

In this section we provide extra implementation details about the correspondence estimation process. For segmentation
transfer we initialize the process with global rigid alignment followed by a two-way ICP match with normal-constrained
alignment. In the event that some vertices in the target mesh do not have a segment match with the moving mesh we use a
k-connected (k=2) region with a majority voting system to assign values to the highly sparse, unmatched vertices.

We also provide an extended description of the key data terms in the deformation graph equation. Equation 3, describes
the main minimization equation as in Guo et. al [3]

Etotal = Edata + αrigidErigid + αsmoothEsmooth (3)

Where Edata is the data term which expands to describe the point-to-point and point-to-plane correspondence error for a
vertex vj which has a matching vertex in the set of correspondences C:
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The Erigid term encourages as-rigid-as-possible deformation and is constructed as:

Erigid =
∑
j

((aTj1aj2)2 + (aTj2aj3)2 + (aTj3aj1)2+

(1− aTj1aj1)2 + (1− aTj2aj2)2 + (1− aTj3aj3)2)

(5)

Where aj1, aj2, aj3 are the column vectors of Rj . The final term, Esmooth penalises abrupt variance between adjacent nodes
and is given by:

Esmooth =
∑
nj

∑
niεN(nj)

w(ni, nj) ‖Ri(ni − nj) + nj + tj − (ni + ti)‖22 (6)



This is formulated in our Gauss-Newton solver which is built using the Eigen1 libraries and CHOLMOD2 for Supernodal
Sparse Cholesky Factorization and converges in less than 5 iterations under the criteria that ∆Etotal < 1e − 6 between
successive iterations. We use ≈ 2.5K nodes and ≈ 3K constraints on each deformation. We use αrigid = 500, αsmooth =
500, αpoint = 0.1 and αplane = 1.0 similar to those values as recommended by Guo et. al [3].

2.3. Geometry Recovery

Missing geometry is not only flagged to be excluded by pointwise correspondence matching, but also we ignore the
velocity-dependant smoothing for recovered geometry and instead opt for a static covariance noise in order to allow for
motion interpolation of recovered data as is seen in Figure 8 (right) of the main paper.

2.4. Detail Synthesis

We extended the description of detail synthesis in the text with figure 2 which provides a more visual guide to the process.

Figure 2. Detail synthesis. Given two regions pictured top where T is a global frame index. We have keyframes at T = 2 and T = 10,
from which tracking is performed to 5 and 6 respectively. For resolving details from 2 −→ 5 we track 5 towards 6 as a normal framewise
alignment giving 6′. We then track 6′ to 6 which greatly relaxed rigidity parameters in order to synthesis surface details. This detail layer
is then linearly interpolated (LERP) for n intervals between 0% and 100% where n is the number of frames between the keyframe and the
boundary. We finally use the cached transformations from the original tracking to propagate the LERP intervals to their respective frames
i.e. in the above example 5(100%), 4(60%) etc... We apply the same process for detail synthesis from 6 −→ 10.

1http://eigen.tuxfamily.org/
2https://developer.nvidia.com/cholmod
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