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1. Additional Experiments

1.1. Generalization test

In order to evaluate the generalization of model, we
held out the following label combinations when training
on MaisToyMulti dataset:

• Square, red, right

• Square, red, left

• Square, red, upwards

• Square, red, downwards

• Triangle, blue, right

• Triangle, blue, left

• Triangle, blue, upwards

• Triangle, blue, downwards

• Letter M, yellow, right

• Letter M, green, right

• Letter M, blue, right

• Letter M, red, right

Then, we used the network to generate all the unseen
combinations above to corroborate if it is actually learning
the meaning of each label. Qualitative results in Figure 1
show that the network is, for the most part, able to generalize
to unseen combinations. However, it appears that the triangle
shape is difficult for the network.

*Equal Contribution

(a) Real sequence.

(b) Generated sequence.

Figure 1: (a) Samples from held combinations (from top
to bottom): Letter M, yellow, right; Square, red, upwards;
Triangle, blue, left. (b) Generated sequences for the same
combinations presented in (a).

1.2. S3

To calculate S3 we train a classifier on real samples and on
fake samples as explained on Section 5. We calculated the S3
metric, for UCF-101 [9], based on two different classifiers,
a TSN [15] action recognition network and a 3D ResNet-18
[8]. The TSN was trained on a batch size of 14 and an initial
learning rate of 0.01. We trained the 3D ResNet-18 using
a batch size of 32, an initial learning rate of 0.001 and a
dropout probability of 0.6. To get the S3 score for Jester [5]



Classifier Architecture Method Train on: Synth. Real S3eval. on: Real Synth. Real

TSN NT 45.5 46.8 85.9 0.39
TSB 48.55 54.91 85.9 0.45

3D ResNet18 NT 36.63 28.83 76.82 0.29
TSB 44.36 29.61 76.82 0.36

Table 1: UCF-101 results of S3 on two different architec-
tures.

Method Dataset FID
NT UCF-101 3108.77 ± 0.04

TSB UCF-101 3110.29 ± 0.10
Jester 841.08 ± 0.005

Table 2: FID scores on Jester and UCF-101.

we decided to use the ECO [13] action recognition network.
We trained it using a batch size of 14, an initial learning rate
if 0.001 and a dropout probability of 0.6. All networks were
trained on 16 frames and their respective learning rates were
scheduled to drop by an order of magnitude after failing to
beat the best recorded test accuracy for 4 straight epochs.

We calculated the S3 with two different architectures for
the UCF-101 dataset to provide a reference for the compar-
isons in the future works. Table 1 shows that the change
of architecture does alter the relative performances of ReS
and SeR to ReR significantly enough to produce important
changes in the score. Therefore, S3 scores obtained from
different classification architectures does not provide a fair
comparison.

1.3. FID

FID [4] calculations were done using the features from the
second-to-last layer of a TSN pretrained on Imagenet [2] and
finetuned on the respective dataset it is going to be tested on.
The network was trained as explained above. We calculated
FID using 4000 samples, we repeated the process 5 times to
get the standard deviation. Table 2 seems to suggest NT is
better than TSB, but this could be due to the fact that FID
cannot separate image quality from diversity. If we take into
account IS and S3 we can deduce that although FID points
to NT being better than TSB this is most likely due to better
sample diversity, not sample quality.

1.4. Motion Constraint

Prior work has used optical flow to generate videos by
warping the images [11, 16] or using it as a prior to generate
spatial features [7, 6]. We rather introduce a intra-class con-
straint on similarity between optical flows produced by real
videos and by generated videos. An illustration is provided
in Figure 2.

To estimate this constraint, first we generate synthetic
samples and sample real videos from the dataset. Optical
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Figure 2: Illustration of the motion constraint calculation.

flow is calculated using the PWC Flow network [3]. More-
over, we calculate the cosine similarity between flows re-
sulted from real videos and flows from generated videos.
We only do this for pairs of real and synthetic videos with
matching labels:

LM =
1

C
ΣB

i ΣB
j Sim(frj , ffi) ={ frj ·ffi

||frj ||·||ffi ||
if yfi = yri

∅ otherwise

(1)

where fr and ff stand for real and generated flows, respec-
tively, B is batch size and C is the number of matching real
and generated flow pairs. This similarity measure enforces
the similarity of motion between samples from the same
class. Finally, we add the constraint only to the generator
loss:

LGM
= LG + (α · (1 − LM )) (2)

where α is a hyperparameter that controls the importance of
the motion constraint LM .

This architecture was dubbed NT-MC, although it did
score better than the baseline with an S3 score of 0.73 on the
Weizmann dataset, it fell short of NT-VAR and TSB. Among
some other disadvantages of this motion constraint is the fact
that it makes training significantly slower and unstable.

1.5. Ablation studies

Our TSB trained on Jester did not record a good per-
formance on the S3 measure, hence we need a qualitative
evaluation to look for a possible reason why this was the case.
Figure 3 shows an acceptable level of quality in both spatial
and motion feature generation. However, TSB still was not
able to produce realistic enough samples in fine structures of
hands and faces as a real person would have.

Impact of latent codes. We wanted to know if in fact
using a multi-variate model for the latent codes had any
effect on what the network learned. Specifically we wanted
to see if assigning a different variance to each subspace
had any effect on the features the network learned to map
to each one of the subspaces. To test this we froze two
out of the three subspaces and re-sampled the remaining
one to produce a new sample. Every subspace will get a
turn at being re-sampled. Figure 4 shows some examples



of this experiment compared to a sample produced by the
originally sampled latent vector. The samples show that the
network learns to assign ZC features that result in bigger
changes in the overall visual features, like gender. We can
observe as well that ZB appears to be in charge more of
motion features, without affecting features such as location
or person identity as much. It appears that ZA is in charge
of more infrequent features like location or small changes
in appearance. This experiment points towards the variance
assigned to a subspace being directly related the types of
features it represents.

Ablation study on different model designs. Figure 5
shows the improvement between models in different classes
of the Weizmann [10] dataset.

Figure 3: Generated samples of TSB trained to produce
192 × 192 samples of the Jester dataset.
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Figure 4: Latent variable experiment. We freeze two out the
three subspaces and re-sample the remaining one to produce
a new sample. We compare each sample to the original to
see what meaning is the network assigning to that specific
subspace.

2. Architectural Details
We adopted most of BigGAN’s [1] architectural choices

inGImage, with the exception that we moved the self-attention
module down one level of abstraction to save video memory.
DImage follows exactly the discriminator guidelines set in
BigGAN, while DVideo adopted the exact architecture used
in MoCoGAN [14], but extended for class conditional hinge
loss per [12]. To describe the width of all networks we
use the product of a layer-wise constant c and a per-layer
constant a. In all experiments a was set to 96. We chose c
to be [16, 8, 4, 2, 1] for GImage, [1, 2, 4, 8, 16, 16] for DImage
and [1, 2, 4, 8] on DVideo.

At the input of GImage we have a fully connected layer
which applies an affine transformation to ZF to transform
it from [T, d + 120] to [T,w · h · 16 · a]. When generating
96 × 96 sized samples we set w and h to 3 and when we
generated samples of size 128 × 128 they were both set to 4.

The sequence generator is composed of a fully connected
layer FC and a GRU cell. FC has a size of d and the GRU
cell has a size of 2048.



Figure 5: Generated samples (from top to bottom) of NT , NT-MC, NT-VAR trained on Weizmann.
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