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1. Introduction and outline
In this supplementary we provide the proofs for the the-

orems in the main text and provide additional experiments
to demonstrate the utility of our proposed algorithm in the
presence of two types of outliers. The two types of outliers
we consider are unstructured uniformly distributed outliers
and structured adversarial outliers. In the former case, we
demonstrate that the proposed algorithms as well as com-
pared algorithms can handle higher than 50% outlier ratios.
In the case of adversarial outliers, ie. outliers that struc-
turally resemble the target point cloud, we demonstrate that
there indeed is a ceiling of 50% ratio of outliers that no
method can identifibility perform beyond.

The outline of the supplementary material is as follows.
In section 2 we provide proofs for proposition 1 in the main
text. In section 3 we provide qualitative and quantitative
results on data with unstructured outliers. In section 4, we
empirically demonstrate the limits of point set matching al-
gorithms in the presence of adversarial outliers. In section 5
we demonstrate the phenomenon of adversarial outliers and
the limits it poses to the regression without correspondence
problem in a toy one-dimensional example.

2. Proofs of proposition 1
2.1. Noiseless case

Among the mn hypothetical regression coefficients ob-
tained through all possible pairs of xi and yj , if a correct
correspondence is encountered (i.e. j = π∗(i)), we have
yπ(i) = xiβ

∗ where β∗ is the true coefficient. Therefore
if we let βi =

yπ(i)

xi
then βi = β∗. Using this estimate,

the distances of the remaining covariates regressed to their
corresponding responses is

xlβ
i − yπ(l) = xlβ

∗ − yπ(l) = 0

Therefore, when computing min
Π∈P
‖xβi−Πy‖22 via the Hun-

garian algorithm [2], each column of the distance matrix

[D]p,q = |xpβi − yq| corresponding to inlier points in y
(i.e. q ∈ I∗) will have at least one zero element. Thus,
the optimal assignment Πi will include all of the permuta-
tions πi(l) = l since they incur zero cost. Since there are
m− k of them by assumption 1, then

∑
l 1(|xl − yπi(l)| ≤

ε/2)) ≥ m − k. This is inequality because there might
be additional outlier points that are by chance close to the
regressed points.

Conversely, for a pair (xi, yπ(k)) where k 6= i, we have
the estimated coefficient βi,k =

yπ(k)

xi
= xkβ

∗

xi
. The dis-

tances of the remaining covariates regressed with this esti-
mate to their corresponding responses are

xlβ
i,k − yπ(l) =

xlxkβ
∗

xi
− yπ(l) = xlβ

∗
(
xk
xi
− 1

)
Therefore, without loss of generality, assuming xl 6= 0 (if
xl = 0 the correspondence (xl, yπ(l)) can be automatically
inferred by choosing any yπ(l) = 0. If there aren’t any yj =
0, then this implies xl is a point without correspondence in
y), we have

|xlβi,k − yπ(l)| ≥ ε

for some ε > 0. ε can be explicitly stated as

ε = min
i,l,k, i 6=k

xlβ
∗
(
xk
xi
− 1

)
On the other hand,

xiβ
i,k − yπ(k) = 0

by construction.
Therefore, when computing min

Π∈P
‖xβi,k − Πy‖22 via

Hungarian algorithm, there will less thanm−k assignments
in the optimal assignment Πi,k such that |xl − yπi,k(l)| ≤
ε/2. Otherwise, this would imply the coefficient βi,k is a
coefficient that explains the inliers, which by assumption 1
cannot be the case. Thus,

∑
l 1(|xl − yπi,k(l)| ≤ ε/2)) <

m− k.

1

mailto:mn2822@columbia.edu
mailto:ev2430@columbia.edu


This shows that the maximal cardinality of a hypothetical
inlier set is at least m − k, and it is only achieved for a
coefficient that is obtained by a correct correspondence pair.
This is sufficient to show that algorithm 1 recovers the true
coefficient B∗ under the noiseless regime.

2.2. Noisy case

Let the noise model of the inlier regression be ε ∼
N (0, σ2). Therefore, if a correct correspondence is en-
countered, we have yπ(i) = xiβ

∗ + ε where β∗ is the true
coefficient. The coefficient estimated from this pairing is
βi = yπ(i)

xi
= β∗ + ε

xi
. When this coefficient is applied to

x we see that

E(xlβi − yπ(l)) = 0, Var(xlβi − yπ(l)) =
(
x2l
x2i

+ 1

)
σ2

E(xlβi − yπ(k)) = (xl − xk)β∗

Var(xlβi − yπ(k)) =
(
x2l
x2i

+ 1

)
σ2

Therefore, if σ2 is small (i.e. in the SNR regime of [4]),
we have |xlβi− yπ(l)| < |xlβi− yπ(k)| for l 6= k with high
probability. Thus the row-wise minimal cost assignment in
the Hungarian algorithm will be πi(l) = l with high proba-
bility. However, even if πi(l) 6= l, if we set margin ν such
that ν = 1

2 min
l,k l 6=k

|(xl − xk)β
∗|, with high probability we

will have that∑
l

1(|xlβi − yπi(l)| ≤ ν) ≥
∑
l

1(|xlβi,k − yπi(l)| ≤ ν)

(1)

where βi,k denotes the regression coefficient obtained via
incorrect correspondence βi,k =

ypi(k)
xi

. Therefore, if σ2 is
sufficiently small, with high probability, algorithm 1 recov-
ers the coefficient βi = β∗ + ε

xi
for some i ∈ I where I

denotes the set of inliers.

3. Unstructured outlier experiments
In this section, we describe experiments done on the

fish point cloud dataset to supplement the results in the
main text. For this experiment, the 3D fish point cloud
was sampled at varying levels from 40 upto 100 points as
the moving point cloud (x). The fixed point cloud (y) was
sampled at the similar level but was missing 10% of corre-
spondences to the moving point cloud. Furthermore, 30%
uniformly distributed outliers was introduced to the fixed
point cloud. For all experiments, we introduced three dif-
ferent levels of difficulty in terms of initialization. For the
simplest case, the moving point cloud was randomly rotated
and scaled 1:1 as the size of the fixed point cloud. We then
increased the scale of the moving point cloud to be 5:1 and

10:1 relative to the fixed point cloud. Lastly, 10% noise
was introduced relative to the scale of the point clouds. The
qualitative and quantitative results of these experiments can
be found in figure 1.

We compared the accuracy and convergence time of
our proposed algorithm, rRWOC with the other algorithms
ICP[1], CPD[3], and homomorphic sensing (HS) [5], the
latter of which is considered to be the state of the art algo-
rithm for regression without correspondence.

In this experiment, rRWOC performed similarly as HS
in terms of accuracy and convergence time. Neither method
was sensitive to the scale of initialization since they are both
global methods. rWOC seem to converge faster with higher
number of points since with unstructured outliers, once a
good inlier set is reached, it is unlikely to confuse it with
another inlier set comprising of outliers.

4. Adversarial outlier experiments

In this section, we introduced 30% adversarial outliers
instead of unstructured or uniform outliers to the data. The
adversarial outliers were drawn as a duplicate subset of the
fish dataset, partially resembling the intended target of
the matching problem. The remaining set up and initaliza-
tion was same as what was done in section 3. The qualita-
tive and quantitative results for this experiment can be seen
in figure 2.

In this experiment, we can see that while rRWOC and
HS are not sensitive to the number of points or the initial-
ization scale in terms of accuracy, rRWOC has a higher
overall accuracy than HS. In terms of convergence speed,
rRWOC tends to converge slower than HS at higher number
of points but faster at lower number of points. The reason
why rRWOC has higher accuracy in this scenario than HS
is that the search space for HS is in the space of transforma-
tions whereas rRWOC looks for maximal inlier sets. The
former search space is prone to error modes where the tar-
get point cloud and adversarial point cloud span structured
subspaces. rWOC is not prone to such an error model, al-
though computational cost might be higher.

5. One-dimensional algorithm toy example

In this section we demonstrate the adversarial outlier
phenomenon in the one-dimensional case using algorithm
2. We show that even in a simple one-dimensional case
without noise, if the outlier set has structure and exceeds
the cardinality of the inlier set (thereby constituting a more
than 50% outlier ratio), we cannot recover the true inliers
under any circumstance. The results of these toy examples
can be seen in figures 3 and 4.
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Figure 1. Unstructured outlier scenario results. A: An instance of the moving (x) and fixed (y) point clouds such that the fixed point
cloud is corrupted by adversarial outliers, i.e. outliers that mimic the structure of the intended target point cloud. B: rRWOC results, C:
ICP[1] results, D: CPD[3] results, E: Homomorphic sensing (HS) [5] results. Note that these are single instances of qualitative results,
the quantitative results were computed using multiple random instantiations. F,G,H: The point cloud matching accuracies of compared
methods for increasing scale number of points sampled for each point cloud.F: The ratio of the scale of the fixed point cloud to the target
was 1:1. G: Ratio 1:5, H: Ratio 1:10. I,J,K: Convergence timing of compared methods at with initialization scales of 1:1 (I), 1:5 (J), 1:10
(K). Note the rRWOC and HS exhibit similar point cloud matching accuracies and computational costs in this scenario.
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Figure 2. Adversarial outlier scenario results. A: An instance of the moving (x) and fixed (y) point clouds such that the fixed point
cloud is corrupted by adversarial outliers, i.e. outliers that mimic the structure of the intended target point cloud. B: rRWOC results, C:
ICP[1] results, D: CPD[3] results, E: Homomorphic sensing (HS) [5] results. Note that these are single instances of qualitative results,
the quantitative results were computed using multiple random instantiations. F,G,H: The point cloud matching accuracies of compared
methods for increasing scale number of points sampled for each point cloud.F: The ratio of the scale of the fixed point cloud to the target
was 1:1. G: Ratio 1:5, H: Ratio 1:10. I,J,K: Convergence timing of compared methods at with initialization scales of 1:1 (I), 1:5 (J), 1:10
(K). Note the rRWOC maintains exhibits slighthy higher acccuracy than HS while retaining similar computation cost.
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Figure 3. One dimensional toy example of adversarial outliers. Red points indicate the moving point cloud (x) of the elements
1, 2, . . . , 10. The solid green points indicate the fixed point cloud that is a transformation of the moving point cloud: yi = 3x. The
hollow green points indicate adversarial points such that yo = (−1) × {1, 2, . . . , 5}. Using the proposed algorithm recovers the true
β = 3 and yields the moved point cloud as the blue dots.

Figure 4. One dimensional toy example of adversarial outliers — failure mode when there is more than 50% outliers. In this example,
the number of adversarial outliers exceed the intended number of inliers and no model can theoretically recover the intended inliers due
to lack of identifiability. Here the inlier set comprising of 8 points is generated by the rule yi = 3x but the outlier set is generated as
yo = (−1) × {1, 2, . . . , 11}. Since the putative β = −1 yields a higher tentative inlier set, the model returns the wrong regression
coefficient and the wrong point cloud transformation.
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