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Figure 1: The architecture of our synthesis network which
takes I1 and I2�1 and predicts T1. Please see Figure 2 for
details of each block. The annotations are the number of
output channels for the last convolution layer of each block.

1. Synthesis Network

We use a GridNet [1] with the modifications from
Niklaus et al. [5] for our synthesis network. It consists
of five rows and four columns where the first two columns
perform downsampling and the last two columns perform
upsampling. Please see Figure 1 for an illustration of the
GridNet architecture that we employed as well as Figure 2
for details about the composition of each building block.

2. Exposure Adjustment

The image formation model for our dual-view dataset
reduces the brightness of the transmissive layer by α where
α is randomly chosen. As such, we supervise our image syn-
thesis model to estimate α · T instead of T which, as shown
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Figure 2: An illustration of the building blocks that we used
in our synthesis network. We use parametric rectified linear
units initialized with α = 0.2 as activation functions.

in Figure 3, has the side-effect of the synthesized images
being darker than desired if there are many reflections. To ac-
count for this, we employ a simple auto-exposure approach
that post-processes the prediction. Specifically, we apply an
additional gain to make sure that the 60-percentile brightness
of the image is no less than 0.5, and 95-percentile brightness
is 1.0 (the image intensity range is [0, 1]). This is similar the
auto exposure algorithm in [6]. This simple post-processing
correctly adjusts the brightness of the synthesis result and
yields less-dark and overall more-pleasant results.

3. Directional Invariance

Our camera setup captures five viewpoints at a time, with
one camera in the center and one camera in each orthogonally
adjacent direction (left, right, up, down). We use the center as
reference and the surrounding viewpoints as the second input
when employing dual-view reflection removal. As such,
we are able to get four different results per scene capture.
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Figure 3: Our synthesis model tends to predict relatively
dark dereflection results due to the image formation model
that we used when creating the training data. We ameliorate
this by using a simple auto-exposure post-processing step.

rendered test set real-world test set

images
used

PSNR
↑

SSIM
↑

LPIPS
↓

PSNR
↑

SSIM
↑

LPIPS
↓

center + left 2 N/A N/A N/A 22.86 0.766 0.103

center + right 2 N/A N/A N/A 22.86 0.766 0.103

center + up 2 N/A N/A N/A 22.82 0.765 0.105

center + down 2 N/A N/A N/A 22.76 0.765 0.105

Table 1: Evaluation of our approach with respect to the
position of the second view. Please note that there are no
metrics (N/A) for our rendered test set since it only comes
with one (randomly positioned) second view per sample.

We reported averages in our main paper and show the per-
direction metrics of our approach in Table 1. This evaluation
demonstrates that our dual-view approach is able to generate
high-quality results regardless of and independent from the
directional location of the second input viewpoint.

4. Additional User Study
Unfortunately, almost no multi-view reflection removal

papers provide reference implementations for their proposed
approach. We were thus forced to limit the comparison in
our main paper and only included the multi-view approach
from Li and Brown [3]. For a more broad comparison, we
conducted an additional user study in which we compare to
more multi-image dereflection methods based on the results
that the authors provided in their papers or websites. Specif-
ically, we include results from [2, 3, 4, 7, 10] on footage
from [3, 7, 10] and conducted an A/B user study with 19
participants. There are 17 sequences in total with between 5
and 9 frames each. We chose the first and middle frames as
input to our approach whereas the baselines use all available
frames. We provided the participants with a comparison tool
where they could switch between our result and the result of
a baseline method (the order of comparisons was random-
ized for each participant), and each participant was asked

test images
from [3]

test images
from [7]

test images
from [10]

images
used

prefer
ours

prefer
ours

prefer
ours

Guo et al. [2] 5 – 9 98.0% 98.3% 99.3%

Li & Brown [3] 5 – 9 92.1% 82.5% 92.1%

Liu et al. [4] 5 – 9 78.3% 42.1% 40.8%

Sinha et al. [7] 5 – 9 N/A 36.8% N/A

Xue et al. [10] 5 – 9 N/A N/A 28.3%

Table 2: Results from an additional A/B user study where
participants compared the results from out method with the
ones from several multi-image derefelction baselines.
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Figure 4: Screenshot with annotations from our supplemen-
tary “results.html” which provides an interface to easily
switch back-and-forth between different results.

to select “the best looking images”. The results of this are
shown in Table 2, some entries are N/A since the authors did
not provide the necessary dereflection results in their papers
or project websites. Even though our method only takes 2
frames as input, it outperforms [2, 3] and is on par with the
recently published [4]. Our dual-view dereflection approach
is only outperformed by [4, 10] on their own test images.

5. Dataset Quality

Existing training datasets for reflection removal could
unfortunately not have been used to supervise a dual-view
model, we thus had to make our own dataset which we will
make publicly available. One may argue that our improved
results for reflection removal may primarily stem from hav-



ing better training data than existing work. However, our
rendered dual-view training data is subject to a significant
domain gap and our rendering pipeline only models glass
as mirrors with alpha transparency. As for our training data
based on transformed real-world images, it follows the im-
age acquisition approach of [9, 12] and the image formation
model of [3, 8, 11]. Our new dual-view training dataset thus
provides no benefit for supervising single-image dereflec-
tion models. This is exemplified by [12] performing better
on the real-world test set of our main user study than our
single-view ablation (our results are preferred 87% of the
time over [12], whereas our results are preferred 92% of the
time over our single-view ablation). However, on our single-
view ablation performs better than [12] on our rendered test
set (quantitatively and qualitatively as shown in Table 3 of
our main paper). This indicates that there is a domain gap
between our synthetic dataset and real-world footage.

6. Qualitative Comparison Tool
Please see the provided “results.html” to visually compare

our proposed approach to several competing approaches for
reflection removal. We provide this interactive interface, of
which an annotated screenshot is shown in Figure 4, to help
the reviewers to better assess the quality of our results.
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