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1. Additional Results and Ablation Studies

Variance analysis of FID We show the FID [2] variance
box-plot of our approach LT-GAN on SNDCGAN [4] and
BigGAN [1] architectures for CIFAR-10 and CelebA-HQ
datasets in Fig 1. To provide a fair evaluation of our ap-
proach using FID, for each configuration, we compute the
FID 3 times with different random initial seeds.

Inception Score We evaluate our approach LT-GAN us-
ing another GAN evaluation metric named Inception Score
(IS) [6]. Here, we report the IS of models trained on
CIFAR-10 dataset. As shown in Table 1, LT-GAN improves
IS over baseline, while CR+LT-GAN approach achieves the
best IS results, on both SNDCGAN and BigGAN architec-
tures.

SNDCGAN | BigGAN
Baseline 7.54 8.79
LT-GAN 7.85 9.13
CR-GAN 7.93 9.17
CR+LT-GAN 8.16 9.17

Table 1: Inception Score for SNDCGAN and BigGAN architectures
trained using different approaches on CIFAR-10.

Choice of Architecture of Auxiliary Network A On
SNDCGAN CelebA-HQ setting using optimal value of
o. = 0.5, we experimented with different architectures for
the auxiliary network A:

e Linear Network: A linear network (with a single fully-
connected layer) - its capacity was not sufficient to dis-
tinguish between generative transformations resulting
from different €’s and hence, the auxiliary task training
failed.
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e Non-linear Network: A non-linear network (with two
fully-connected layers and ReLU activation at the hid-
den layer) achieved a FID score of 19.63.

e Convolutional Network: A convolutional network
(with a convolutional layer, a batch normalisation layer
and a fully-connected layer) achieved a FID score of
21.27.

2. Qualitative Analysis of Generated Images
2.1. LT-BigGAN [ImageNet]

Steerability of latent space We show more qualitative
samples of varying the zoom, brightness, vertical position
and horizontal position in generated images of classes same
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Figure 1: FID Variance box plot of LT-GAN approach on different ar-
chitectures for CIFAR-10 and CelebA-HQ.
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Figure 2: Samples of generated images from categories with mode collapse in Baseline BigGAN and its corresponding images generated from LT-
BigGAN model. The 6 blocks of images corresponds to ImageNet classes: (a) digital clock, (b) parachute, (c) nematode, (d) anemone fish ,(e) theater
curtain and (f) daisy. In each block (that comprises of 4 rows of images), the top part (1st and 2nd row) corresponds to images generated using Baseline
(BigGAN) model and the bottom part (3rd and 4th rows) corresponds to images generated using our approach LT-BigGAN.

as [5], through latent space manipulation as discussed in
Section 4.3 of the paper. Fig. 3 shows sample images gen-
erated from LT-BigGAN and baseline BigGAN model on
perturbing the latent code in the positive and negative di-
rection of brightness and zoom vector. Similarly, Fig. 4
shows latent space steerability for horizontal and vertical
shift. We can observe that the baseline model generates dis-
torted images at the extremes and fails to control brightness
factor and semantic content for all categories. In contrast,
LT-BigGAN generates smooth variations of images while
preserving the content and is able to generalize the bright-
ness even for categories that usually are not available in a
dark environment e.g cheeseburger class.

Mode Collapse In the conditional image generation
setting on ImageNet dataset using our proposed self-
supervision approach, we observe that it not only improves
the FID score but also helps in alleviating the issue of
mode collapse. In Fig. 2, we show example images of
classes which suffer from mode collapse in baseline Big-
GAN model trained on ImageNet and its corresponding
samples generated from LT-BigGAN. We can see that im-
ages generated from LT-BigGAN are more diverse as com-
pared to the baseline model.

2.2. Image Editing on LT-StyleGAN [CelebA-HQ)]

In Fig. 5, we show more examples of the manipulation
of facial attributes namely age, gender, smile expression and
eyeglasses by using the InterfaceGAN framework [7] on LT-
StyleGAN model.

3. Hyper-parameter Details

This section mentions the choice of hyper-parameters for
training LT-GAN over different datasets and architectures.
For experiments in CR-GAN, as mentioned in [8], the aug-
mentation used for consistency regularization is a combi-
nation of randomly shifting the image by a few pixels and
random horiozontal flipping. The shift size is 4 pixels for
both CIFAR-10 and CelebA-HQ datasets, and rest all hyper-
parameters remain same as baseline. For our LT-GAN ap-
proach, we used twice the batch size for G and kept the
batch size of D same as that of the baseline, because this
modification achieved better results. Note that for fair com-
parison, we also tried doubling the batch size of G for base-
line models, however the FID performance deteriorated.

3.1. SNDCGAN CIFAR-10

Following the hyper-parameter choices of [8], we
use dgtep = 1 and set the dimensionality of the latent
space to be 128. Adam optimizer with « = 0.0002,
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Figure 3: Qualitative comparison for varying brightness and zoom between LT-BigGAN (left) and Baseline BigGAN (right) in five categories of ImageNet

through latent space manipulation method of [5]

B1 = 0.5 and By = 0.999 is used for both G and D. We
use a batch size of 64 for both GG and D for baseline models.

LT-GAN: o, is chosen to be 0.6 and Adam optimizer
with default values of a = 0.001, 5; = 0.9 and 85 = 0.999
is chosen for the auxiliary network A. A is set to 1.0.
The encoder features F(G(z)) corresponding to gener-
ated images G(z) are taken from the fifth layer of the
discriminator !. The features F(G/(z)) are passed through
an average-pool 2D layer with kernel size 2, stride 2 and
zero padding, and then flattened before being passed to
the auxiliary network. The number of warmup iterations n
before introducing the self supervision task is 2000.

ISNDCGAN discriminator consists of 7 convolutional layers followed
by a linear layer at the end. Each convolutional layer is followed by a
ReLU activation. We treat each convolutional layer followed by its ReLU
activation as a single layer. Thus, SNDCGAN discriminator consists of 8
layers.

CR+LT-GAN: o, is chosen to be 0.55. Rest all hyper-
parameters are same as those mentioned for LT-GAN.

3.2. BigGAN CIFAR-10

We use standard value [1] of dgteps = 4, dimension-
ality of z as 128 and batch size as 64. Adam optimizer
(a = 0.0002, 51 = 0.0 and By = 0.999) is used for G &
D.

LT-GAN: o, is chosen to be 0.6. Adam optimizer with
default values of o = 0.001, 81 = 0.9 and B2 = 0.999 is

chosen for the auxiliary network A. A is set to 1.0. The en-
coder features F/(G(z)) corresponding to generated images
G(z) are taken from the last layer of the discriminator just
before sum pooling. The number of warmup iterations n
before introducing the self supervision task is 2000.
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Figure 4: Qualitative comparison for geometric transformation (horizontal and vertical shift) between LT-BigGAN (left) and Baseline BigGAN (right) in

five categories of ImageNet through latent space manipulation method of [5]

CR+LT-GAN: All hyper-parameters are same as that of
LT-GAN with default CR-GAN configuration.

3.3. SNDCGAN CelebA-HQ

Following the hyper-parameter choices of [8], we use
dsteps = 1 and set the dimensionality of the latent space
to be 128. Adam optimizer with = 0.0002, 5, = 0.5 and
B2 = 0.999 is used for both G and D. We use a batch size
of 64 for both G and D for baseline model.

LT-GAN: o, is chosen to be 0.5. Adam optimizer with
default values of & = 0.001, 81 = 0.9 and 35 = 0.999 is
chosen for the auxiliary network A. X is set to 1.0. The en-
coder features F/(G(z)) corresponding to generated images
G(z) are taken from the seventh layer of the discriminator.
The features F/(G(z)) are passed through an average pool
2D layer with kernel size 4, stride 4 and zero padding, and
then flattened before being passed to the auxiliary network.

The number of warmup iterations n before introducing the
self supervision task is chosen to be 1500.

CR+LT-GAN: Number of warmup iterations n is set to
be 5000. Rest all hyper-parameters are same as those men-
tioned for LT-GAN.

3.4. StyleGAN CelebA-HQ

StyleGAN adopts progressive growing of both the gen-
erator and the discriminator networks. In LT-StyleGAN,
we introduce the self supervision task after the layer cor-
responding to 128 resolution has completely faded into the
network architecture. The per-pixel noise added after after
each convolution block in generator is kept same while gen-
erating images corresponding to latent codes z and z + e.
For incorporating mixing regularization in LT-StyleGAN,
the GAN-induced transformation of G(z1, #2) is generated
as G(z1 + €1, 22 + €3), where € and ¢, are distinct.
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Figure 5: Manipulation of Age (top left), Gender (top right), Smile (bottom left)and Eyeglasses (bottom right) attributes by navigating the latent space of
LT-StyleGAN using InterfaceGAN [7] framework. Original images are in the centre and the left and right images are generated by moving the latent code

in negative and positive directions respectively.

Following the hyper-parameter choices of [3], we set the
dimensionality of both the latent spaces Z and W to be 512.
The mapping network from Z to W is a 8 layer MLP. While
training using progressive growing, we start from 8 x 8 res-
olution, fade in a new layer during the next 600K images
and then let the network stabilize for next 600K images be-
fore introducing a new layer. For 128 x 128 resolution,
we use Adam optimizer with « = 0.0015, 8; = 0.0 and
B2 = 0.99 for both G’s synthesis network and D. We re-
duce the learning rate by two orders of magnitude for G’s

mapping network (i.e. a learning rate of a = 0.000015), as
specified in [3]. We use dstcps = 1. We use a batch size of
32 for both G and D with mixing probability set to 0.9 for
baseline model.

LT-GAN: We choose o, to be 0.5, with a mixing prob-
ability of 0.5. Adam optimizer with default values of a@ =
0.001, 81 = 0.9 and By = 0.999 is used for the auxiliary
network A. We use A value of 0.5. We take the encoder
features E'(G(z)) corresponding to generated images G(z)
from the layer of the discriminator corresponding to 16 x 16



resolution. The features E(G(z)) pass through an average
pool 2D layer with kernel size 2, stride 2 and zero padding,
and then we flatten it before passing it to the auxiliary net-
work.

3.5. BigGAN ImageNet

We use the default conﬁguration4 of dstep = 1, dimen-
sionality of z as 120, batch size of 8 x 256. We select Adam
optimizer with o = 0.0001 and 0.0004 for G for D respec-
tively.

LT-GAN: We choose o, to be 0.5. We set Adam op-
timizer with default values of « = 0.001, 81 = 0.9 and
B2 = 0.999 for the auxiliary network A. X is set to 0.5. We
take the encoder features F(G(z)) corresponding to gener-
ated images G(z) from the seventh layer of the discrimi-
nator. The features F(G(z)) pass through an average pool
2D layer with kernel size 2, stride 2 and zero padding, and
then we flatten before passing to the auxiliary network. The
number of warmup iterations n before introducing the self
supervision task is set to 100K 2.
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We use the pretrained model of https://github.com/
ajbrock/BigGAN-PyTorch as baseline and use the provided check-
point at 100K for fine-tuning with LT-GAN



