Conflicting Bundles: Adapting Architectures Towards the Improved
Training of Deep Neural Networks - Supplementary Material

David Peer Sebastian Stabinger Antonio Rodriguez-Sanchez
University of Innsbruck
Austria

https://iis.uibk.ac.at/

2.2 Conflicting bundle metric
The following approximation for definiiton 1 is motivated in the paper to check if two samples x; and x; are bundled:

@ I+1 I+1
®\|a§ R Y (1)

To further support this claim, we demonstrate next using a heatmap how many bundles can be correctly detected if the finite

representation is considered or if the finite representation is neglected. In a second experiment we compare eq. (I) that
(+1) _

considers the resolution during backpropagation with the check a; ag-lﬂ) that not considers this.

Forward vs. backpropagation We sampled 60k random a(") values from [0,1) and randomly created weights within
(L) (L)

[0.5,1.0). For different learning rates and batch sizes, if there are two a;"” and a;

values that update the weights W exactly

the same way, we report them as bundled in fig.[Tal Afterwards, we report how many bundles can be detected by simply
using the oY = a§l+1) check in fig. We report the same for the proposed method eq. (1) in fig.

i

1e-07

7
S
2
Learning rate
Learning rate

Learning rate
"
5
&
S

g
s

1e-05

128 256
128 256 1024 Batch size
128 256 1024 Batch size

Batch size (L) _ (L)

(c) Bundles measured with a; a;
which not consideres the resolution during
backpropagation

(b) Bundles measured with eq. to consider
the resolution during backpropagation

(a) (Generated) real conflicts

Figure 1: A heatmap that shows how many bundles are detected with different metrics.

It can be seen in fig. [Tb|that the floating-point representation must be considered to be able to measure the real formation
of bundles during backpropagation, otherwise bundles are not detected as shown in fig.

Measure the bundle entropy In this experiment, we compare the bundle entropy that is measured using aEL) = a;-L) with
the bundle entropy measured using eq. (I). The result is shown in fig. 2}

—— Testacc. - Imagen. --+- Bundle entr. - Imagen. —— Testacc. - Imagen. --=- Bundle entr. - Imagen.

p——— /A—A—A“

08- 4

o8- /

o

o
°
S

I
w

Accuracy
°
Y
Accuracy
°
£
5
Bundle entropy

-
S
Bundle entropy

02-

0.5 0.5
0.0- o @ e o L oo 0.0 . loo
0 20 40 60 80 100 120 o 20 40 60 80 100 120
Depth Depth
. . L L
(a) Bundle entropy measured with eq. . (b) Bundle entropy measured with a§) = ag-)

Figure 2: Comparison of the bundle entropy if the finite representation of the used floating points value is considered or not.

It can be seen that bundles are only detected if the real representation that is used in CPUs and GPUs is considered also
for this real-world example. Otherwise, bundling happens during backpropagation, but it cannot be quantified correctly.

3.1 Setup

In image fig.[3|the architecture that is used for VGG net (without residual connection) and ResNet is shown. We followed
He et al. [1]] to design the basic blocks and scale the number of layers.

BasicBlock [filter_size] Network
Conv 7x7, stride=2,
Conv 3x3, stride=1, . filter_size = 64
filter_size BatchNormalization
BatchNormalization RelU Architecture for different num. layers
RelLU | MaxPool2D 3x3 Num. Blocks /| Num. Layers | 4 | 10 | 20| 30| 50 76/ 100|120
¢ _ a 1/1(2|3[3(3|3]|3
Convl3x3, strlde:l, a x BasicBlock 64 b ol1l2(3|6|6]12]12
filter _size K
BatchNormalization b x BasicBlock 128 ¢ U 48] 8]1225] &L | 4L
" | ¢ x BasicBlock 256 g O L[2]|8]3]3]8]|¢&

N
d x BasicBlock 512

ReLU v
! AvgPool2D
L FC-10

Figure 3: Architecture motivated by He et al. [1] that is used for experimental evaluation.

3.2 Training with a fully conflicting bundle

Detailed results. In the following graphs we show detailed training results of each experiment that we executed for the
fully conflicting bundle case under controlled settings:

—— Test accuracy
—es— Out. neuron 1 - mean
—— Qut. neurons - std.

—— Gradient ampl.

1.0 le—4
— . -1.0
N
0.8
g -0.8 =
2 =
£06 063
£ L —————— 5
5 0.4- / AN 04¢
s . 3
[G] — N <
0.2 \/ \ 0.2
—t
0.0- -0.0
0 10 20 30 40
Epoch

(a) No conflicting bundle, balanced dataset.

—— Test accuracy
—e— OQOut. neuron 1 - mean
—— Qut. neurons - std.

—— Gradient ampl.

101874
10

0.8 i
° A 0.8y
£o06 063
g 1] 3
5 0.4- -0.4C
(0] “ 3
G &

0.2 \/\ . 0.2

\A/.‘\‘/
0.0- 0.0
0 10 20 30 40
Epoch

(c) No conflicting bundle, inbalanced dataset.

—— Test accuracy
—e— Out. neuron 1 - mean
—— Out. neurons - std.

—— Gradient ampl.

1_0,103—4
1.0
0.8- 4
% -0.8 =
2 =
506 -0.63
§ 5 : 3
5 0.4 040
g 3
[G] <
0.2- 4 -0.2
3 -0.0
0.0- = : *
0 10 20 30 40
Epoch

(e) Fully conflicting bundle, balanced dataset.

—— Gradient ampl. —— Test accuracy
—e— Out. neuron 1 - mean
—=— Out. neurons - std.

1.0 le—-4
A -1.0
0.8
g -0.8 8
2 g
506 063
£ %
5 0.4 040
€| g
(] © <
0.2 -0.2
0.0/ — e 0.0
0 10 20 30 40
Epoch

(g) Fully conflicting bundle, balanced dataset.

—— Cluster entropy —es— Num. clusters

g-le—l -50
6- . -40
2 -—" [
s — .

308
€ 4- ././ ?
o " S
£ 20 €
32- 3
(9]

=
o

NI —

(=}

0 10 20 30 40
Epoch

(b) No conflicting bundle, balanced dataset.

—— Cluster entropy —e— Num. clusters

3 le-1 -50
6- Y . ~40
> ./-/'/
8‘ /'/ £
,E al — -30%
@ - 3
= L 3]
2 20 €
32- E}
o " z
-10
0- ——— e —
-0
0 10 20 30 40
Epoch

(d) No conflicting bundle, inbalanced dataset.

—— Cluster entropy —s— Num. clusters

8,le—l 50
6- -40
g o
S a
=] -30&
54 3
2 20 E
32- 2

]
-10
0,
-0
0 10 20 30 40
Epoch

(f) Fully conflicting bundle, balanced dataset.

—— Cluster entropy —e— Num. clusters

8*18_1 50
6- 40
) @
o [7)
= -304
2 20E
32- 2
[}
-10
0_
-0
0 10 20 30 40
Epoch

(h) Fully conflicting bundle, balanced dataset.

Figure 4: Experiment with a toy dataset and manually initialiZed weights to compare training with a fully conflicting bundle
for balanced and imbalanced datasets.

Weight initialization. For this experiment, it is important to ensure that a single fully conflicting bundle is created in order
to be able to evaluate if the predictions of our hypothesis are correct. The weights are initialized as follows:

Weight initialize_xtipn (1) +0.5 (1) +1.0
(1) No fully conflicting cluster) -05) +1.0
(2) Fully conflicting cluster

(1) +1.0
(2 +1.0

(1)+0.1
(2)+0.1

@) +0.1
(2)+0.0

(1)+0.1
(2) +0.0

(1)+0.2
@ +0.1

1) +1.0
(2) +1.0

(1)-05 1)-1.0
(2)-05 @2-1.0

Figure 5: Initialization of the weights to not produce conflicting bundles (1) or to produce a fully conflicting bundle (2)

3.5 Residual connections

Detailed proof that residuals bypass conflicts. We prove that residual connections bypass or solve conflicting layers. A
graphical idea of the proof is given in fig.[6]

w,) and v {z;)

Intermediate
Layer

.) # all{z;)
Confiicting ’ !
therefore the
same output for
bhoth inputs

Figure 6: Graphical illustration of the proof that bijective residual functions bypass conflicting layers.

Additionally, we relax the assumption that the bypass is an identity mapping as this strong assumption is not needed for
this proof, we simply assume that the bypass or residual mapping r(z)’ for layer [is some bijective function:

Proof. Assume that layer [produces conflicts for z; and x; without a residual connection. We call this intermediate con-
flicting output d). The output for 2; and z; of the layer which adds a residual connection (") (z) is therefore a("*!) (z) =
W (x) + dW. The residual () (z) is a bijective function []] and therefore it can be shown that the output a("*1)(z) is
bijective for inputs z; and x;:

Injective: a"*Y)(z) is injective for inputs x; and x; iff a1 (2;) = a*Y(z;) — x; = x;. We know that 7 (z;) +
dW =+ (z;) + dW iff rO (x;) = 7O (2;) iff 2; = x;, because V) () is assumed to be bijective. Therefore a!*1)(z) is
injective on inputs x; and x;.

Surjective: a"*Y)(z) is surjective for inputs z; and x; iff Yy 3z. a(z) = y. But for all y there exists some z such that
y —d® = r®(x) since 7V (z) is assumed to be bijective. Therefore a!+1) () is injective on inputs x; and ;.

Bijective: a"*1)(z) is bijective for inputs z; and x; because it is surjective and injective for those inputs. Therefore
a1V (z;) # a"*Y(x;) which conflicts the definition of bundles and it can be concluded that conflicts are solved (or
bypassed) if the residual (!) () is a bijective mapping. O

We proved that conflicts introduced by a layer are solved (or bypassed) if a bijective residual connection is added. Note
that we not proved that conflicts are impossible if bijective residual connections are added, although the experiments indi-
cate that this happens in practice. More precisely, it is not possible to prove this stronger statement because there exists a
counterexample: If the learned intermediate result is exactly the negative function of the residual, the sum of the intermediate
result and the residual is always zero and therefore fully conflicting, but this case is very unlikely and therefore, we have
never seen this case in the experiments (see also He et al. [1]]) .

3.6 Auto-tune

Evolution of the architecture. In this table, we give one detailed execution, how the auto-tune algorithm pruned the 120
layer network architecture. The table below shows the adaption for the network trained on Cifar (Execution 1).

Epoch | Blocka Blockb Blockc Blockd
Start 3 12 41 3
1 3 4 41 3
2 3 3 41 3
3 3 3 0 3

It can be seen that only three epochs are needed in order to find this architecture, although the new architecture is faster,
needs less memory and maintains the accuracy as shown in the paper.

Multiple executions. In the tables below we report each architecture that the auto-tune algorithm created for each dataset
and three different executions:

Imagenette:
Block
Execution Layers a b ¢ d Accuracy Mem. [MB] Time/Step [ms]
1 26 3 3 3 3 84.5 69 200
2 22 3 4 0 3 84.7 55 200
3 24 3 3 2 3 84.8 65 200
Cifar:
Block
Execution Layers a b ¢ d Accuracy [%] Mem.[MB] Time/Step [ms]
1 20 3 3 0 3 85.3 54 50
2 18 3 2 0 3 84.9 53 45
3 20 3 3 0 3 85.8 53 50
Svhn:
Block
Execution Layers a b ¢ d Accuracy Mem. [MB] Time/Step [ms]
1 20 3 3 0 3 95.3 54 47
2 18 3 2 0 3 95.0 53 43
3 20 3 3 0 3 95.1 54 47
Mnist:
Block
Execution Layers a b ¢ d Accuracy Mem. [MB] Time/ Step [ms]
1 18 31 1 3 99.2 57 40
2 16 31 0 3 99.3 52 40
3 16 31 0 3 99.3 52 40

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778, 2016.

