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This supplementary material provides additional results
and details that could not be included in the main paper due
to space constraints.
Raw reconstruction We first provide additional results for
raw reconstruction in Fig. S1. This figure extends Fig. 3 of
our main paper. It can be observed from the per-pixel error
maps that our proposed method produces more accurate raw
reconstruction results than competing approaches.

In our experiments on raw recovery in Section 4.1 of
our main paper, we had used seven of the total of nine
cameras in the NUS dataset [3]. Our approach requires
the demosaiced raw-RGB image, which we obtained us-
ing the software ISP of [4], since the hardware ISPs of
these cameras are inaccessible. Our method assumes that
the demosaiced raw-RGB image and its rendered sRGB
version are spatially aligned. We found that the hardware
ISPs of the Samsung NX2000 and the Fujifilm X-M1 cam-
eras from the NUS dataset apply different lens correction
and demosaicing routines compared to the software ISP
of [4]. This leads to a spatial misalignment between the
sRGB images (produced by the cameras’ hardware ISP) and
the demosaiced raw-RGB images (obtained using the soft-
ware ISP of [4]). Therefore, we had omitted images from
the Samsung NX2000 and the Fujifilm X-M1 cameras for
this experiment. We would like to highlight that this spa-
tial misalignment is an outcome of the hardware ISPs be-
ing inaccessible, and is not to be construed as our proposed
method’s lack of generality.
Re-rendering to sRGB We also present additional results
for sRGB re-rendering in Fig. S2. This figure extends Fig.
4 of the main paper. We compare against the UPI [2] and
Cycle [6] methods that model the ISP in both the forward
and reverse directions. It can be seen from the results that
we outperform both UPI and Cycle.
Exposure correction In Section 4.4 of the main paper, we
had demonstrated our method’s usefulness for exposure cor-
rection. Table S1 provides quantitative results on the Sam-
sung NX2000 camera from the NUS dataset [3] which we
had used as our test set. Comparisons are provided against
the ‘Auto tone’ feature in Photoshop, and the recent expo-

Table S1. Quantitative exposure correction results on the Samsung
NX2000 camera images from the NUS dataset [3] averaged over
-2 EV (underexposure error) and +1 EV (overexposure error).

Method PSNR (dB) / SSIM
Mean Median Worst 25% Best 25%

Auto tone 16.43 15.93 13.01 20.83
Photoshop 0.874 0.906 0.741 0.950

DIEC [7] 18.79 18.73 14.40 23.39
0.880 0.893 0.790 0.941

Ours 41.99 42.58 37.26 45.92
0.995 0.996 0.991 0.998

sure correction method DIEC [7] that handles both under-
exposed and overexposed images. We selected the DIEC
algorithm in particular because most existing exposure cor-
rection methods are designed solely for correcting either un-
derexposure or overexposure errors, with the vast majority
of them, including recent deep learning methods, focusing
on the underexposure scenario [7].
Motion deblurring We had demonstrated our method’s ap-
plicability to the problem of motion deblurring in Section
4.5 of our main paper. Table S2 quantitatively illustrates
the advantage of deblurring in the raw-RGB space using our
proposed approach versus directly in sRGB.
Ablation study As explained in the last paragraph of Sec-
tion 3 of our main paper, our proposed spatially aware
raw reconstruction pipeline is implemented patch-wise. In
the main paper, we had presented a comparison against a
‘W/O spatial’ variant of our method that used all N corre-
sponding raw-sRGB samples at once to compute a global

Table S2. Quantitative motion deblurring results on the Samsung
NX2000 camera images from the NUS dataset [3].

Method PSNR (dB) / SSIM
Mean Median Worst 25% Best 25%

sRGB 24.77 24.35 19.81 30.49
0.779 0.792 0.647 0.893

Ours 27.10 26.57 22.10 32.78
0.903 0.937 0.778 0.972
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Figure S1. Raw reconstruction. This figure extends Fig. 3 of our main paper. Results of the competing approaches of [2, 6, 5, 1] are
presented. A variant of our method, denoted ‘W/O spatial’, that constructs a global mapping function by considering only pixel RGB
values and ignoring spatial information, is also provided for comparison. Our results and the ground truth (GT) are shown in the last two
columns, respectively. The corresponding per-pixel error maps are shown as insets. Note that a gamma function has been applied to all
raw-RGB images for better visualization.

mapping function, similar to existing methods. The map-
ping function considers only the RGB intensity values of
the samples, but ignores spatial information. In particu-
lar, si = (sRi , sGi , sBi), 1 ≤ i ≤ N , and the last two
coordinates (sXi , sYi) are discarded during the interpola-
tion process. Here, we provide another baseline compari-

son that uses only the RGB intensity values similar to W/O
spatial. However, unlike W/O spatial, the interpolation is
performed patch-wise similar to our proposed method. This
lends a spatial component to this variant because although
only RGB intensity values are used, the mapping function
itself varies per patch. We denote this baseline as ‘W/O spa-
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Figure S2. Re-rendering to sRGB. This figure extends Fig. 4 of our main paper. Results of [2, 6] and our method are provided. The ground
truth is presented in the last column. The corresponding per-pixel error maps are shown as insets.

Figure S3. Comparison between our proposed method and a W/O
spatial variant run patchwise.

tial patchwise’. A performance evaluation between our pro-
posed method and the W/O spatial patchwise variant run on
the 200 images from the Canon 600D camera is presented
in the plot of Fig. S3. It can be observed that our pro-
posed method’s raw reconstruction accuracy is significantly
higher validating the importance of including the spatial co-
ordinates into the interpolation framework.
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