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This supplementary material provides 1) the train-
ing&testing splits for MPI-Sintel and MIT Intrinsic; 2)
more examples for visualization and comparison.

1. Training&Testing Splits
We use the same training&testing split files with [8]

and [1] for MIP-Sintel and MIT Intrinsic, respectively. We
think it would be good to publish these files such that any
following-up works can use them and make a fair compar-
ison with us or any previous relevant works. We report the
scene-split for MPI-Sintel and object-split for MIT Intrinsic
dataset below.

MPI-Sintel:
training: alley 1, bamboo 1, bandage 1,cave 2,market 2,
market 6, shaman 2, sleeping 1, temple 2
testing: alley 2, bamboo 2, bandage 2, cave 4, market 5,
mountain 1, shaman 3, sleeping 2, temple 3
MIT Intrinsic:
training: apple,box, cup1, dinosaur, frog1, panther, paper1,
phone, squirrel, teabag2
testing: cup2, deer, frog2, paper2, pear, potato, raccoon,
sun, teabag1, turtle

2. More Examples for Visualization
• Fig. 1 and Fig. 4: visual results on MPI-Sintel dataset

with scene split and image split, respectively. We com-
pare our method with [6, 8, 4, 5, 1]. We particularly
point the readers to the flatten patches and fine textures
(see red arrows) in the images to show the superiority
of our method.

• Fig. 3: more visual results on MIT Intrinsic dataset. In
Fig. 3 we compare our FFI-Net with different versions
in [2]; ours are clearly visually better than [2].

• Fig. 2: visual results on IIW benchmark. We compare
our FFI-Net with other representative approaches [3,
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Figure 1: Examples on the MPI-Sintel dataset (scene split).

9, 7].
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Figure 2: Qualitative comparisons of (A)lebdo and (S)hading on IIW.
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Figure 3: Sample (A)lbedo and (S)hading on MIT Intrinsic.
Comparison with different versions in [2]. Results of [2] are
downloaded from their project webpage.
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Figure 4: More Examples of (A)lbedo and (S)hading pre-
dictions on MPI-Sintel (image split).


