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1. Network details
The proposed SSA2D network architecture takes in a

video clip and predicts pixel-wise actor and action classes
using an encoder-decoder based model. Since the network
has multiple blocks, we show each of the major block here
with their technical details.

1.1. Encoder block

The encoder block is the first part of the architecture.
This block is responsible for feature extraction from a given
clip and is shared by all future decoder blocks. As shown
in Figure 1, the input clip is passed through multiple con-
volutional layers. In the paper we use I3D as our backbone
network for encoding clip features. Hence, we follow the
same layer order. From Figure 1, Conv1 and Conv2 are con-
volutional layers with same kernel size and strides as the
I3D network. Conv3, Conv4 and Conv5 use the inception
configuration with 2, 5 and 2 inception blocks respectively.
We change the pooling strides and kernel sizes accordingly
to get final output of T

4 ×
H
16 ×

W
16 from an input clip of

T ×H×W . We take skip connection after Conv2 layer and
Conv3 layer, which is passed to each of the decoder block
accordingly.

1.2. Decoder block

The decoder block is used all three branches (STU-Mask
detection, actor detection, action detection) of the proposed
network. The purpose of decoder block is to take encoded
features and produce detection masks accordingly. All three
branches use identical decoder block. Only the final output
layer’s channel is adjusted according to the desired branch
output. As A2D only provides annotation for single frame,
loss for action detection is only computed for single frame.
As such, decoder block in actor detection is configured to
predict only single frame output. However, the object fea-

tures going into the OFI block does not get affected by this
configuration. Since ViDOR dataset has per frame annota-
tion, the decoder block outputs all frames predictions. In-
put to the block is encoded features from the encoder block.
This is passed through deconvolution layers which will per-
form convolution as well as upsampling of the layers to
increase the size. The operation is costlier than only con-
volution, so we only implement two deconvolution layers.
To help retain features, we add skip connection from the
encoder block. Skip connection 2 is concatenated with De-
conv1 features and skip connection 1 is concatenated with
Deconv2 features. The output feature size of Deconv2 layer
is adjusted to be T

2 ×
H
4 ×

W
4 , which is temporally half and

spatially one-fourth of the input resolution. This was done
to keep the network smaller and improve efficiency. On a
larger memory GPU this can be further increased to original
input resolution, which results to finer segmentation output.
We apply dilated (atrous) convolution to capture features
at multiple receptive fields (rate=3,6,9,12). Following fea-
ture pyramid network, we also take features after Deconv1
and Deconv2 layer and upsample it 4× and 2× respectively,
which is then concatenated to features from dilated convo-
lution.

1.3. Network size

We also evaluate our network’s size in terms of train-
ing parameters. Our RGB only model has ∼35M pa-
rameters considering we have 3 decoder branches, while
our RGB+OF model has ∼55M parameters. Considering
ResNet-101 alone has∼44M parameters [4] and since prior
works [1, 2] use ResNet-101 as encoder backbone for each
of their RGB and OF stream, they will have ∼88M training
parameters even without additional parts of their network
(decoder, RPN, segmentation). This further demonstrates
why our network can be trained in a single 12 GB GPU and
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Figure 1. Encoder block details. The encoder contains multiple inception blocks to extract relevant features for decoder network. To retain
fine grained features from initial layers, two skip connections are passed to the decoder network, which helps in fine grained pixel-level
detection.

has faster inference time.

2. Results

Here we provide some more results on A2D dataset
and VidOR dataset for the experiments reported in main
manuscript.

2.1. Actor-Action per class accuracy

For a better understanding of class-wise detection, we
look at the actor-action per class accuracy score. From the
A2D dataset experiment reported on main manuscript, we
provide a detailed per class average accuracy score using
our RGB+OF model in Figure 2 and 3. We report the re-
sult on all 7 actor classes and 9 action classes along with
background class for no actor/action region.

Figure 2. Per actor class average accuracy score for A2D. The net-
work is gets high accuracy for most classes except ball. This is due
to the low number of training samples for ball and small blurry
region for a moving ball. The background class is for all pixels
where no actor is present.

Figure 3. Per action class average accuracy score for A2D. Here,
None class means an actor is present but it is doing no action. The
background class is for all pixels where no actor/action is present.

C

Figure 4. Qualitative analysis of some failure cases. The top, mid-
dle and bottom row represents input key frame, ground truth se-
mantic segmentation mask and our joint actor-action detection pre-
dictions with label respectively.

2.2. Per class IoU

We also evaluate the IoU scores per class and observe the
classes for which our method has issues in.



adult baby
Modality BG climbing crawling eating jumping rolling running walking none climbing crawling rolling walking none

RGB 98.5 58.6 61.6 91.3 37.4 41.4 46.1 66.4 49.5 56.8 69.4 68.1 47.8 36.6
RGB+OF 98.5 68.2 65.7 92.8 54.9 37.7 49.6 64.1 48.8 70.3 78.1 77.6 65.9 23.1

ball bird car
flying jumping rolling none climbing eating flying jumping rolling walking none flying jumping rolling running none

RGB 14.9 21.2 70.9 15.3 56.2 49.9 64.1 26.5 46.2 35.1 19.7 38.1 88.6 60.9 79.3 30.9
RGB+OF 17.2 33.6 77.3 19.1 63.9 51.6 66.8 48.6 52.8 55.9 29.1 36.7 90.5 61.1 74.1 30.4

cat dog Avg
climbing eating jumping rolling running walking none crawling eating jumping rolling running walking none

RGB 54.1 78.9 22.6 73.5 40.6 55.9 13.9 44.5 66.4 21.2 45 29 63.9 7.6 49.3
RGB+OF 63.9 90.1 27.3 81.5 44.6 67.7 14.1 53.7 68.1 28.9 45.5 28.1 79.1 11.3 54.7

Table 1. Per class accuracy scores on A2D dataset using RGB only and RGB+OF variants. We observe that there are more classes where
having explicit motion information improves the performance.

bite caress carry chase clean close cut drive feed get off get on grab hit
24.04 8.97 9.12 9.19 4.54 1.01 0.93 9.02 1.68 0.65 0.49 1.47 1.25

hold hold
hand of

hug kick kiss knock lean on lick lift open pat play
(instru-
ment)

point to

19.08 8.68 24.88 1.38 5.13 0.52 24.05 1.29 9.48 13.40 0.64 17.86 1.57

press pull push release ride shake
hand
with

shout at smell speak to squeeze throw touch use

2.76 8.54 7.68 2.71 19.10 9.12 0.49 4.65 15.34 0.46 0.72 1.66 4.14

watch wave wave
hand to

Average

42.02 3.56 7.04 7.9

Table 2. Per class action IoU score on VidOR dataset.

A2D: From the A2D dataset experiment reported on main
manuscript, we provide a detailed per class actor-action IoU
score using our RGB only and RGB+OF model in Table 1.
We report the result on all valid 43 actor-action pairs in this
table.

VidOR: We also evaluate the per class IoU score for Vi-
dOR dataset. We report the 42 action classes IoU score. The
ground truth annotations are bounding boxes which causes
extra noise to be added for fine pixel-level detection task.
In contrast, A2D provides pixel-wise semantic segmenta-
tion which is more fine-grained than bounding box and has
fewer noise in the labels. We use the bounding box anno-
tations provided as ground truth and let the network learn
the segmentation. We observe that the network starts to re-
duce noise and learn a more accurate detection instead of
the bounding box. This causes the IoU score to be always
lower as it never matches the bounding box ground truth.
We convert each detection instance into the minimum en-
closed bounding box for a reasonable comparison with the
ground truth bounding box. Table 2 shows the per class
action IoU score we observed for VidOR dataset. Besides
the immense data imbalance in actor and action classes, the
activities in VidOR are active (watch, push, open, get on,
close) and passive (watch, speak to, lean on, shout at) which
makes detecting action based on motion challenging task.

2.3. Self-attention

Learning the local and global spatio-temporal relation
between features in the entire video is challenging with
small kernel size, therefore we utilize self-attention [3] to
learn short and long range dependencies between the fea-
tures, providing a better contextual understanding. The
self-attention module SA takes the spatio-temporal fea-
tures from encoder block fenc1 as input and learns fenc ∈
RT

4 × H
16×

W
16 which has a better understanding of spatio-

temporal relations. We notice that the self-attention module
helps in overall action detection task.

2.4. Atrous(dilated) convolution

Since atrous convolution helps encapsulate features
through multiple receptive fields, we expect it to help in
improving detection of objects which are too large or too
small. We remove atrous convolutions from all decoder
blocks in the model and evaluate the model to see its im-
portance. We observe network performance drops without
atrous convolution as this contextual information is missing.

2.5. Multi-scale

Another component in our model is the multi-scale fea-
ture concatenation from different upsampling layers, simi-
lar to FPN. Features of a region from different granularity



Figure 5. Qualitative results for A2D using our network showing the keyframe from input video clip, ground truth with actor-action
annotations and SSA2D predicted output with actor-action labels respectively.

boosts network performance as key features are highlighted.
We observe that this component has less impact on the net-
work compared to atrous convolution for multi-scale feature
encoding.

2.6. RGB vs RGB+Optical Flow Analysis

We observe how our model performs per class in Table 1,
where the per class accuracy score is shown for both of our
RGB model and RGB+OF model. It is seen that the pro-
posed method can detect most classes accurately in RGB
model and the scores are further increased with flow model.
The explicit motion information helps improve the score
overall in most of the classes.

2.7. Failure cases

In Figure 4 we have shown some of the failure cases of
our method. We observe that the network is able to detect
correct foreground region in most cases, however, it gets
confused on similar actors such as dog-cat or adult-baby.
The approach suffers from data imbalance so classes with
lower samples will perform lower which is observed in the
prior works as well. This is one of the limitation of our
approach which can be improved in future works.

2.8. Qualitative results

We provide additional qualitative results for A2D dataset
in Figure 5 predicted using our network. A2D has fine
pixel-level class labels in ground truth, so the network pre-



Figure 6. Qualitative results on VidOR dataset using our network. (a) Sample image from an input clip from the VidOR dataset. (b) Ground
truth labels with bounding box annotation for actor-action pairs. (c-g) Predicted actor-action pairs from our network. We can see that the
network is able to detect more actions related to the pair than present in ground truth.

Figure 7. Qualitative results on VidOR dataset using our network. (a) Sample image from an input clip from the VidOR dataset. (b) Ground
truth labels with bounding box annotation for actor-action pairs. (c-f) Predicted actor-action pairs from our network. We observe that the
network predicts relations correctly even if it is missing from ground truth.

dicts precise edges for actor-action pairs.
We provide VidOR dataset results in Figure 6 and 7.

VidOR has bounding box ground truth labels, so the net-
work cannot learn precise boundary as loss calculation is
done on entire bounding box. Figure 6 shows a sample clip
where two adults are performing a martial arts move. The
ground truth labels for this clip are Adult-watch and Adult-
pull. The network predicts Adult-watch correctly as seen in

Figure 6(g) and predicts partial Adult-pull in Figure 6(f) as
only that region is related to pull action. The network also
predicts Adult-hold hand, Adult-hug and Adult-kick in Fig-
ure 6 (c, d, e) respectively for that region as those actions
also seem correct for the given sequence.

Similarly Figure 7 shows a sample clip from VidOR
where an adult is pushing a child on a swing. The ground
truth labels in Figure 7(b) shows labels for adult-watch. The



objects in the clip are adult and child, where the child object
has no action associated with it in the ground truth. The net-
work correctly detects adult-watch in Figure 7(c). Further-
more, the network also predicts adult-hold and adult-push
actions in Figure 7(d),(e); both of which seem correct for
the given clip sequence. It also predicts child-hold in Fig-
ure 7(f) which is a valid label from the dataset but missing
from the ground truth annotation.
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