
Supplemental Material: Robust Lensless Image Reconstruction via PSF
Estimation

Joshua D. Rego
Arizona State University

Karthik Kulkarni
Arizona State University

Suren Jayasuriya
Arizona State University

1. Network Architecture Details
For the network architectures, we use the same Gener-

ator and discriminator architecture for both the reconstruc-
tion and PSF estimation networks. For the generator net-
work architecture, detailed in Table 1, we use five encod-
ing layers, five decoding layers and a convolution layer in
the center and output. Skip connections are also used to
transfer high-level features to the decoding layers. Each en-
coding layer uses two convolution layers and then performs
batch normalization and a ReLU activation function. Each
decoding layer uses an upsampled output from the previous
layer and concatenates it with the corresponding encoding
layer output before using three convolution layers. A kernel
size, k, of 3×3 is used for all layers except the output layer
and a stride, s, of 1 is used for all layers.

Table 1: Network architecture parameters for the generator

Generator

Input Layer k s Channels Activation
in/out

image enc1 3 1 3 / 24 ReLU
enc1 enc2 3 1 24 / 64 ReLU
enc2 enc3 3 1 64 / 128 ReLU
enc3 enc4 3 1 128 / 256 ReLU
enc4 enc5 3 1 256 / 512 ReLU
enc5 conv1 3 1 512 / 512 -

conv1’+enc5 dec5 3 1 512 / 256 ReLU
dec5’+enc4 dec4 3 1 256 / 128 ReLU
dec4’+enc3 dec3 3 1 128 / 64 ReLU
dec3’+enc2 dec2 3 1 64 / 24 ReLU
dec2’+enc1 dec1 3 1 24 / 24 ReLU
dec1 conv2 1 1 24 / 3 -

For the discriminator architecture, detailed in Table 2,
we use four convolution layers with the LeakyReLU acti-
vation function and an output layer that uses a Linear acti-
vation function. Each layer uses a kernel size of 3 × 3 and

a stride of 2 except the output layer that uses a stride of 1.
For training we take the mean of the output logits from the
discriminator as the critics score for the generator’s output.

Table 2: Network architecture parameters for the discrimi-
nator

Discriminator

Input Layer k s Channels Activation
in/out

image conv1 3 2 3 / 64 LeakyReLU
conv1 conv2 3 2 64 / 128 LeakyReLU
conv2 conv3 3 2 128 / 256 LeakyReLU
conv3 conv4 3 2 256 / 512 LeakyReLU
conv4 out - - 512 / 1 Linear

2. Additional Results
In the next few pages, we show additional results for our

single PSF reconstruction, multiple PSF reconstruction, and
real data captured from the hardware prototype.
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(a) Ground Truth (b) Ours (c) Le-ADMM-U (d) UNet (e) ADMM

Figure 1: Comparison on DiffuserCam dataset [1]: We perform single PSF reconstruction on a set of 9 test images using
different models. Note that output of our model is very close to the Ground Truth and performs on-par with the state-of-the-art
Le-ADMM-U model.

9877



(a) Lensless Image (b) PSF Estimate (c) PSF Target (d) Reconstruction (e) Image Target

Figure 2: Multiple PSF Reconstruction: We display the PSF estimated as well as the reconstructed images for three different
simulated PSFs on the DiffuserCam dataset [1]. Our method is able to generalize and reconstruct multiple PSFs, although the
quality of the reconstruction is missing some high frequency information. However, the resulting reconstructions are uniform
in quality across the three different PSFs. This shows the potential for generalization of our network for multiple lensless
camera without training a separate model for each one.
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(a) Lensless Image (b) ADMM (c) Reconstruction (d) Target

Figure 3: Real Data with Multiple PSFs: Example reconstructions of real image data captured with three different PSFs.
Here reconstruction performance was not as visually pleasing, primarily due to the real PSFs quality in captured caustics.
Despite this limitation, the network is still able to invert the meaurements to achieve plausible reconstructions.
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