A. Statistics on the annotated YTSM

This section shows statistics on the YT8M, annotated
with the object detector [1]. We annotate each frame of
YTS8M with the object detector and store the five objects
with highest detection scores. Our method relies on objects
recurring multiple times in a video. The method works better
when objects occur multiple times in the selected frames.
Therefore, Table 6 displays statistics for objects that occur in
most videos. For each object, we count how often the object
recurs in the 32 frames sampled with the strategy from [68].
For example, in 49 percent of videos, an object with class
Footwear occurs. Each of those videos has, on average, 15
instances of the Footwear class.

We discard objects with a low detection score. Figure 5
shows the fraction of boxes below a certain threshold. All
methods in this work use a threshold of 0.05, which discards
about 3 percent of the objects. We experimented with higher
thresholds, but this resulted in worse VTAB scores.
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Figure 5: Cumulative histogram of the detection scores from
the object detector. Histogram measured on the videos from
YTS8M, annotated with our detector [1]. In our experiments,
we exclude boxes with scores below 0.05, which applies to
approximately 3 percent of the objects.

B. Sensitivity to hyperparameters

Our experiments use three important hyperparameters.
We used the validations sets from the VTAB benchmark to
set the hyperparameters. This section shows the sweeps we
make so one can judge the sensitivity for each hyperparam-
eter. Figure 6 shows the search for hyperparameter w from
Equation (3). Figure 7 shows the search for a positive co-
efficient to include the cross entropy loss in the experiment
for Table 1, row Also predict cross entropy. Figure 8 shows
the search for a positive coefficient for the cross entropy
loss when learning from the soft labels from IMAGENET for
Table 1, row Distilling from IMAGENET.

LABEL NAME  Videos (%) Recurrence

STREET LIGHT 14 13.1
FLOWER 15 9.6
CHAIR 15 7.3
LAND VEHICLE 15 5.6
TABLE 20 7.6
Toy 21 13.0
BOTTLE 22 9.7
CAR 24 12.0
BUILDING 28 9.9
WOMAN 30 12.0
WHEEL 30 13.4
POSTER 37 11.1
WINDOW 44 17.9
FOOTWEAR 49 15.0
TREE 50 32.9
MAN 51 14.8
HUMAN FACE 72 20.5
CLOTHING 84 24.1
PERSON 86 30.0

Table 6: Recurrence of objects within the 32 frames sampled
for learning from one video. For example, on average, 86%
of the videos contain an object labeled PERSON. In each
video where a PERSON occurs, the detector annotated an
average of 30 instances. We show averages over ten thousand
videos that we randomly sampled from the training set.
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Figure 6: VTAB scores on respective validation sets when
changing the weight for the object-level loss. The optimum
accuracy occurs at 5, which is the value we use in all
experiments. The VTAB scores change away from the
optimum, but are relatively stable when comparing to
baseline (see Table 1). The error bars indicate bootstrapped
95% confidence intervals.
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Table 7: VTAB accuracies for each method and dataset considered in our work. Each number represents the accuracy after
transferring the model learned with the method to the specific dataset. Each dataset has only 1000 labeled samples. We follow

the transfer protocol from [60]
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Figure 7: VTAB scores on respective validation sets when
changing the weight for the additional supervised loss on
the objects. The optimum accuracy occurs at 0.1, which is
the value we use in the ablation experiment. The error bars
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indicate bootstrapped 95% confidence intervals.
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Figure 8: VTAB scores on respective validation sets when
changing the weight for cross entropy loss on the soft labels.
This corresponds to row Distilling from IMAGENET reported
in Table 1. The optimum accuracy occurs at 1.0, which is
the value we use for the experiment . The error bars indicate
bootstrapped 95% confidence intervals.



