
A. Vision-only long-tail learning

Fig. S 7: Architecture of vision-only smDRAGON.

To understand the effect of re-calibration we now study
a simpler variant of DRAGON that can be applied to the
more common vision-only long-tail learning. We name it
smDRAGON for single-modality-DRAGON, and show that
it achieves new state-of-the-art results, compared to uni-
modals baselines, on ImageNet-LT, Places365-LT, CIFAR-
10 and CIFAR-100. On iNaturalist smDRAGON is com-
parable to SoTA. To adapt to single-modality, we train
smDRAGON only on the predictions of the visual-expert
(VE). It outputs a single set of coefficients {wV (y)}y∈Y
to rescale the predictions of the visual expert, instead of
two sets of coefficients. Subsequently, Eq. (1) reduces to
S(y) = wV (y)pV (y).

In other words, smDRAGON is a simplified version of
DRAGON that is trained on the predictions of the visual-
expert only (no class descriptors being used). smDRAGON
takes the predictions of a freezed visual-expert and rescale
it by learning a single set of polynomial coefficients. Dur-
ing inference, smDRAGON balances the visual-expert pre-
dictions in a sample-by-sample basis.

Tables 8 and 9 compare smDRAGON against approaches
in the unbalanced CIFAR-10 and CIFAR-100, as presented
in [7]: CE Loss, Resample [11], Reweight [11], Focal [11]
and LDAM Loss [7]. DRW [7] denotes models that were
trained with the training schedule proposed by [7].

Table 10 compares smDRAGON with popular baselines
and recent long-tail learning approaches in the ImageNet-
LT and Places365-LT benchmarks. Those are the same
baselines as in the Smooth-Tail setup (Section 6).

The results demonstrate that (1) smDRAGON outper-
forms all baselines and (2) combining smDRAGON with
SoTA approaches (LDAM or DRW) has a synergistic effect.

Table 11 compares DRAGON with smDRAGON on CUB-
LT. It shows that fusing information between modalities
(third row) gives better results than re-scaling expert pre-
dictions alone (first and second rows).

Finally, on iNaturalist 2018, smDRAGON is compara-
ble to SoTA, reaching 69.1% compared to 69.5% (CB-
LWS [23]). Table S12 compares smDRAGON against long-
tail learning approahces on iNatrualist2018 [20]. iNatual-
ist2018 is a real-world large-scale long-tailed dataset which
has 437,513 training images with a total of 8,142 classes.

VISION-ONLY UNB. CIFAR-10 UNB. CIFAR-100
IMBALANCE TYPE LONG-TAIL TWO-LEVEL LONG-TAIL TWO-LEVEL

IMBALANCE RATIO 100 10 100 10 100 10 100 10
[11] RESAMPLE 29.4 13.2 38.1 15.4 66.56 44.9 66.2 46.9
[11] REWEIGHT 27.6 13.5 38.1 16.2 66.0 42.9 78.7 47.5
[11] FOCAL 25.4 12.9 39.7 16.5 64.0 42.0 80.2 50.0
CE [7] 29.6 13.6 36.7 17.5 61.7 44.3 61.4 45.4
CE* (VE) 29.8 13.1 36.6 17.8 61.7 43.8 61.6 45.7
FOCAL [27] 29.6 13.3 36.1 16.4 61.6 44.2 61.4 46.5
LDAM [7] 26.6 13.0 33.4 15.0 60.4 43.1 60.4 43.7
SMDRAGON (OURS) 22.1 12.2 27.1 12.4 58.0 42.2 54.4 41.0

Table S 8: Vision-only long-tail. Error rate of ResNet32
on unbalanced CIFAR-10 and CIFAR-100 [7], compar-
ing smDRAGON and SoTA techniques. smDRAGON was
trained over predictions of the cross-entropy model (CE*).
Reported values are the top-1 validation error. Asterisks *
denote results reproduced using published code.

VISION-ONLY UNB. CIFAR-10 UNB. CIFAR-100
IMBALANCE TYPE LONG-TAIL TWO-LEVEL LONG-TAIL TWO-LEVEL

IMBALANCE RATIO 100 10 100 10 100 10 100 10
CE-DRW* (VE1) 24.7 13.5 28.6 13.9 59.2 42.2 58.9 45.0
M-DRW [15] 24.9 13.6 26.7 13.2 59.5 43.5 58.9 44.7
LDAM-DRW [7] 23.0 11.8 23.1 12.2 58.0 41.3 54.6 40.5
LDAM-DRW* [7] (VE2) 23.0 11.8 23.4 12.2 57.9 41.6 54.6 43.5
VE1 + SMDRAGON 20.4 12.1 21.5 11.9 56.5 42.11 53.3 40.6
VE2 + SMDRAGON 21.2 11.7 20.6 12.3 56.7 41.2 54.0 40.3

Table S 9: Vision-only long-tail: smDRAGON was trained
on top models trained with DRW (VE1) or LDAM-DRW
(VE2) [7]. Similar to Table 8 except that all models were
trained with DRW schedule [7]. Reported values are top-1
validation error. Asterisks * denote results that we repro-
duced using code published by the authors of [7].

Vision-Only Places365-LT ImageNet-LT
ResNet-50 ResNet-10 ResNeXt-50

CE Loss* (VE) 30.2 34.8 44.4
Bal’ Loss 32.4 33.1 -
Lifted Loss [41] 35.2 30.8 -
Focal Loss [27] 34.6 30.5 -
Range Loss [57] 35.1 30.7 -
FSLwF [16] 34.9 28.4 -
OLTR [29] 35.9 34.1 37.7
CB τ−norm [23] 37.9 40.6 49.4
CB LWS [23] 37.6 41.4 49.9

smDRAGON (ours) 38.1 42.0 50.1

Table S 10: Vision-only long-tail learning: smDRAGON
achieves better AccPC on Places365-LT and ImageNet-LT.

B. Additional analysis of the familiarity effect
Here we provide a deeper analysis showing that

DRAGON effectively addresses the “familiarity bias”.
The familiarity bias causes models to incorrectly fa-

vor head classes: Figure S8(a) shows the confusion matrix



AccPC AccLT

VISUAL EXPERT + SMDRAGON 55.8 66.0
SEMANTIC EXPERT + SMDRAGON 57.7 63.4
DRAGON (OURS) 60.1 67.7

Table S 11: Ablation study, comparing smDRAGON to
DRAGON on CUB-LT: Fusing information between modal-
ities improves performance (test set, CUB-LT).

Vision-Only iNaturalist
ResNet-50

[11] Focal 61.1
LDAM [7] 64.6
LDAM-DRW [7] 68.0
CB τ−norm [23] 69.3
CB LWS [23] 69.5

smDRAGON (ours) 69.1

Table S 12: Vision-only long-tail: Comparing smDRAGON
on long-tailed iNatrualist. Baseline results where copied
directly from [7] and [23].

of a standard ResNet-101 trained on CUB-LT, as computed
on the validation set. Classes, of the confusion matrix, are
ordered by a decreasing number of training samples, with
class #1 having many samples and class #200 have few sam-
ples. Black dots denote count larger than 15.

It illustrates two effects. First, the trained model cor-
rectly classifies head classes, based on the fact that the top
rows have no incorrect (off-diagonal) predictions. Second,
for mid and tail classes, predictions are clearly biased to-
wards the head, since there are many more off-diagonal pre-
dictions to the left (head class predictions).

DRAGON corrects for the familiarity bias: Figures
S8(b) and S8(c) demonstrate that DRAGON learns to offset
the familiarity bias. The left panel (b) shows the familiarity
effect on CUB-LT before recalibration. The right panel (c)
shows that DRAGON corrects the familiarity bias and pro-
duces a more balanced average confidence across the head
and tail classes.

DRAGON re-calibrate predictions: In the main paper
(Figure 1(c)) we showed that a model that is trained on un-
balanced data has higher confidence for head classes and
it over-estimate them. By reversing the familiarity bias,
smDRAGON, implicitly, also re-calibrate experts pre-
dictions. Figure 9 compares the reliability diagrams for
smDRAGON against raw ResNeXt-152, Temp Scaling [17]
and Dirichlet Calibration [25] (common and SoTA calibra-
tion approaches). We report both per-class-accuracy (ACC)
and expected-calibration-error (ECE) for each model.

(a)

(b) (c)

Fig. S 8: DRAGON learns to offset the familiarity bias. (a)
A confusion matrix of a ResNet101 trained on CUB-LT as
a function of the number of samples per class. The ma-
trix shows markers for pairs of (gt, predicted) whose count
is larger than 15. (b) Average-confidence per-class of the
classifier. (c) Similar curve as (b) but for DRAGON. Black
lines depict a linear regression line. DRAGON per-class con-
fidence has smaller dependence on the number of samples
in the train.

C. Visual experts are better at the head,
semantic experts excel at the tail

Here we provide supporting evidence to our observation
from Section 4 of the main paper that semantic experts are
better at the tail: “Semantic descriptions of classes can be
very useful for tail (low-shot) classes, because they allow
models to recognize classes even with few or no training
samples [26, 52, 4]”. Additionally, we demonstrate that the
visual expert is better for the many-shot regime.

We focus on the Two-Level CUB distribution, and eval-
uate the accuracy for the many shot classes when restricting
predictions to these classes (many-among-many), and sep-
arately the accuracy for the few-shot classes when predic-
tions are restricted to these tail classes (few-among-few).

Figure S10(a) shows the accuracy over few-shot classes
of both experts in few-among-few setting. The semantic ex-
pert outperforms the visual one, and this effect stronger with
fewer samples. For example, with 1-shot learning, the se-
mantic expert is almost 100% better than the Visual Expert.
Additionally, when we measure the accuracy of the many-
shot classes in the many-among-many setup (accuracy at



(a) (b)

(c) (d)

Fig. S 9: Reliability Diagrams on ImageNet-LT, for (a) raw
ResNext-50, (b) smDRAGON, (c) Temperature-Scaling [17]
and (d) Dirichlet-Calibration [25]. We report expected-
calibration-error (ECE) and per-class accuracy (ACC)

(a) Few-among-few (b) Many-among-many

Fig. S 10: Accuracy as a function of number of samples at
the tail, of the Visual Expert and the Semantic Expert used
in our study. (a) Accuracy among few-shot classes; The Se-
mantic expert outperforms the visual expert. (b) Accuracy
among many-shot classes; The Visual expert outperforms,
regardless of the number of samples at the tail.

the head), the visual expert is better than the semantic ex-
pert Figure S10(b).

D. Training the fusion-module in small scale
datasets

Our goal is to have the fusion-module learn to capture the
correlations between the number of training samples and the
output confidence (the familiarity bias), so it can adjust for
it. Unfortunately, while the familiarity effect is substantial
in the validation data and the test data, it may not present
in the training data in small scale datasets. The reason is:
Models tend to overfit and become overconfident over rare
classes in the training set. This effect is illustrated in Figure

(a) (b)

Fig. S 11: The familiarity bias effect: (a) On CUB-LT
the effect is strong on validation samples (blue) but not on
training samples (orange). (b) On ImageNet-LT the effect
is prominent on both train and validation samples.

S11(a) (compare Train versus Validation curves) for CUB-
LT. We observed the effect in also in SUN-LT and AWA-LT.

To address this mismatch, we hold-out 50% of the sam-
ples of the tail classes and 20% of the samples of the head
classes of the training data and use it to simulate the re-
sponse of experts to test samples. This set is used for train-
ing the fusion-module.

Note, that after training the fusion module, we re-train
the experts on all the training data (including the hold-out
set), in order to use all data available. (See Section E for
more details).

In large-scale datasets, like ImageNet-LT, no hold-out set
is needed and DRAGON is trained on the training set. There,
the familiarity bias is also present on the training data (Fig-
ure S11(b)), as the models did not overfit the tail classes.

E. Implementation details
Training: Considering the observation from Section D,
regarding CUB-LT, SUN-LT and AWA-LT, we train the ar-
chitecture in three steps: First, we train each expert on the
training data excluding the hold-out set. Second, we freeze
the expert weights and train the fusion-module on all the
training set. Finally, we re-train the experts on all the train-
ing data in order to use all data available. For the hold-out
set, we randomly draw half the samples of the tail classes
and 20% of the samples of the head classes. For inference,
we use the fusion-module trained at the second step with the
experts trained at the third step.
Platt-scaling: We used Platt-scaling [34] to tune the combi-
nation coefficient λ by adding constant bias β and applying
a sigmoid on top of its scores: λ = σ

[
f0 − β

]
, where β is

a hyperparameter selected with cross validation.
Fusion-module: We trained the fusion-module using
ADAM [24] optimizer. For large-scale datasets, like
ImageNet-LT, Places-LT and iNaturalist, we used L2 regu-
larization, selected by hyperparameter optimization using
grid search ∈ {10−5, 10−4, 10−3}], to avoid overfitting.



SORTING AccPC AccLT

NO-SORTING 58.5 57.0
SORTING-BY-VISUAL-EXPERT 60.1 67.7
SORTING-BY-SEMANTIC-EXPERT 59.8 67.7

Table S 13: Ablation study, quantifying the contribution of
sorting the fusion-module inputs (test set, CUB-LT).

ARCHITECTURE AccPC AccLT

F.C. 56.4 66.3
F.C. & 1/ny RE-SCALE 56.4 56.2
F.C. & NON-PARAMETRIC RE-SCALE 58.2 64.3
CONV. & NON-PARAMETRIC RE-SCALE 58.4 67.1
CONV. & SINGLE PARAMETRIC RE-SCALE 59.3 64.3
DRAGON (OURS) 60.1 67.7

Table S 14: Ablation study, comparing different fusion and
re-scaling approaches. The results show the contribution of
the convolutional backbone and the re-scaling method for
the two experts (test set, CUB-LT).

Hyper-parameter tuning: We determined the number
of training epochs (early-stopping), selected architecture
alternatives, and tuned hyperparameters using the valida-
tion set, using AccLT for Smooth-Tail and Vision-only, and
AccPC for Two-Level.
For DRAGON: We optimized the following hyper-
parameters: (1) Number of filters in the convolu-
tion layer ∈ {1, .., 4}. (2) Degree of polynomial in
Eq.2 ∈ {2, 3, 4}. (3) Learning rate ∈ {10−5, 10−4, 10−3}.
(4) Bias term of Platts rescaling β ∈ [−2, 2].
For CADA-VAE [38]: We applied a grid
search for the latent embedding space ∈
[12, 25, 50, 64, 100, 200, 250], variational-autoencoder
learning rate ∈ [0.0001, 0.00015, ..., 0.015] and classifier
learning rate ∈ [0.0001, 0.0005, ..., 0.1]. We used a batch
size of 64.
For Focal Loss [27]: We applied a grid-search for gamma
∈ [1, 2, ..., 15] and alpha ∈ [0.1, 0.2, 0.5, 0.75, 0.9, 1].
For Range Loss [27]: We applied a grid-search
for alpha ∈ [0.1, 0.2, 0.5, 0.75, 0.9, 1] and beta
∈ [0.1, 0.2, 0.5, 0.75, 0.9, 1].
For Anchor Loss [27]: We applied a grid-
search for gamma ∈ [0.1, 0.5, 1, ..., 15] and slack
∈ [0.001, 0.005, 0.01, ..., 0.5].
For LDAM Loss [27] we applied a grid-search for C
∈ [0.1, 0.2, ..., 0.9].

E.1. Computing AccLT :

AccLT measures the accuracy over a test distribution
that resembles the training distribution. However, the test
and validation samples of CUB-LT, SUN-LT and AWA-

TRAINING PROCESS AccPC

ALL-TRAIN 56.6
END-TO-END 46.4
THREE-STAGE-TRAINING 60.1

Table S 15: Ablation study, quantifying the contribution the
effect of three-stage training as proposed in Section E. (test-
set, CUB)

LT have a different distribution because they were origi-
nated from an approximate uniform distribution. Thus, to
compute AccLT we measure the accuracy for each indi-
vidual class, and then take a weighted sum according to
the class frequencies in the training set. Specifically, for
each class, we assign a weight Ptrain(y) according to the
train-set distribution such that 0 < Ptrain(y) < 1 and∑

y ptrain(y) = 1. Then we compute the accuracy per
class and report the weighted average across all classes:
AccLT =

∑k
y=1 ptrain(y)acc(y). This is equivalent to

transforming the test set to have the same distribution as
the train set.

E.2. A clarification about the Smooth-Tail
benchmark

In this section, we explain how the long-tail bench-
mark was aligned with the two-level benchmark, as was
mentioned in the paragraph that describes the long-tailed
datasets (Section 6 of the main paper).

To align the long-tail benchmark with the two-level
benchmark, we first ordered the classes according to their
number of samples in the two-level distribution. Then we
calculated the number of samples for each class according
to the required long-tail distribution, and accordingly drew
samples to construct the training set.

E.3. Training CADA on Smooth-Tail benchmark

In this section, we explain how we trained CADA-
VAE [38] for the long-tail benchmark.

To evaluate CADA-VAE [38] on long-tail benchmarks
we used the code published by the authors and followed the
training protocol exactly as they used for the two-level dis-
tribution. Since the protocol relies on a hard distinction be-
tween head classes and tail classes, we had to choose where
to partition the smooth long-tail distribution to head and
tail. Our solution is simple. It is based on the fact that
we aligned the order of classes in the long-tail distribution
to be the same order as in the two-level split (Section E.2).
The alignment allowed us to use the same partition to head
and tail as used for the two-level benchmark.



Model Accms Accfs AccH

Most Common Class* 0.7, 0.7, 0.7, 0.7 0, 0, 0, 0 0, 0, 0, 0
LDAM [7]* 71.5, 71.9, 71.6, 71.5 1.2, 5.9, 24.1, 41.2 2.4, 10.9, 36.0, 52.2
REVISE [43] - - 36.3, 41.1, 44.6, 50.9
CA-VAE [38] 58.2, 57.6, 60.0, 62.2 44.8, 51.6, 59.4, 62.3 50.6, 54.4, 59.6, 62.2
DA-VAE [38] 50.6, 56.0, 56.8, 56.8 47.9, 53.2, 61.0, 65.4 49.2, 54.6, 58.8, 60.8
CADA-VAE [38] 59.6, 60.9, 62.3, 63.1 51.4, 57.5, 63.6, 68.8 55.2, 59.2, 63.0, 64.9
CE Loss* (VE) 72.7, 72.9, 72.7, 72.0 0.6, 3.7, 19.1, 38.6 1.2, 6.9, 30.2, 50.2
LAGO [4]* (SE) 69.2, 69.0, 69.0, 68.1 13.8, 21.9, 38.1, 51.5 23.0, 33.2, 49.0, 58.6
DRAGON (ours) 58.0, 62.9, 63.3, 66.1 52.8, 55.9, 63.8, 69.6 55.3, 59.2, 63.5, 67.8

(a) Two-Level CUB

Model Accms Accfs AccH

Most Common Class* 0.2, 0.2, 0.2, 0.2 0, 0, 0, 0 0, 0, 0, 0
LDAM [7]* 43.7, 44.0, 44.2, 44.3 2.2, 6.6, 19.0, 31.8 4.3, 11.5, 26.6, 37.0
REVISE [43] - - 27.4, 33.4, 37.4, 40.8
CA-VAE [38] 35.8, 37.5, 37.5, 39.0 40.0, 46.5, 53.8, 55.7 37.8, 41.4, 44.2, 45.8
DA-VAE [38] 34.8, 37.3, 38.6, 38.2 41.4, 45.1, 50.2, 54.8 37.8, 40.8, 43.6, 45.1
CADA-VAE [38] 37.6, 38.2, 39.4, 41.9 44.1, 49.0, 55.3, 55.1 40.6, 43.0, 46.0, 47.6
CE Loss* (VE) 46.3, 46.3, 46.2, 45.6 0.9, 4.9, 17.2, 33.0 1.8, 8.9, 25.1, 38.3
LAGO [4]* (SE) 30.6, 30.4, 30.7, 31.0 14.4, 18.7, 21.9, 25.2 19.6, 23.2, 25.6, 27.8
DRAGON (ours) 37.2, 39.2, 40.5, 41.6 45.5, 49.6, 55.1, 57.2 41.0, 43.8, 46.7, 48.2

(b) Two-Level SUN

Model Accms Accfs AccH

Most Common Class* 2.5, 2.5, 2.5, 2.5 0, 0, 0, 0 0, 0, 0, 0
LDAM [7]* 90.7, 90.7, 90.5, 90.5 6.6, 14.4, 26.6, 41.6 12.4, 24.8, 41.1, 57.0
REVISE [43] - - 56.1, 60.3, 64.1, 67.8
CA-VAE [38] 73.4, 77.7, 81.0, 81.0 56.8, 66.0, 72.8, 77.1 64.0, 71.3, 76.6, 79.0
DA-VAE [38] 74.0, 74.6, 73.5, 73.9 63.0, 71.4, 77.7, 79.8 68.0, 73.0, 75.6, 76.8
CADA-VAE [38] 76.6, 79.4, 81.9, 82.6 63.8, 68.7, 74.8, 78.0 69.6, 73.7, 78.2, 80.2
CE Loss* (VE) 90.7, 90.9, 89.7, 87.9 5.9, 11.2, 32.6, 57.9
LAGO [4]* (SE) 82.6, 81.9, 81.7, 81.5 11.5, 20.6, 46.2, 59.4 20.2, 33.0, 59.0, 68.7
DRAGON (ours) 74.5, 76.7, 79.2, 81.7 61.1, 62.9, 74.3, 82.1 67.1, 69.1, 76.7, 81.9

(c) Two-Level AWA

Table S 16: Comparing DRAGON with SoTA GFSL models and baselines with increasing number of few-shot training
samples on the CUB, SUN and AWA datasets. We report per-class Accms, Accfs and AccH . Each cell represents 1-shot,2-
shot,5-shot and 10-shot accuracies

F. Additional metrics

F.1. Accfs and Accms on Two-Level benchmarks

Table S16 provides the results of Accfs and Accms (de-
scribed in section 7) for the Two-Level benchmark. We
show results for 1,2,5 and 10-shots. At the main paper we
reported the results for the AccH metrics, which is derived
from Accfs and Accms reported here.

F.2. Ablation results on the test set

In the main paper (9) we described results for ablation
study on the validation set. Here we report results for the
same model variant on the test set.

Tables S13 and S14 show the results of the ablation study
on the test set. It shows the same behavior as the ablation
study on the validation set that was reported in the main pa-
per. Table S15 compares three different training protocols:
(1) All-Train: Training the DRAGON fusion-module naively



without a hold-out set. (2) End-To-End: Training all the ar-
chitecture (both experts and fusion-module) end to end in
an early fusion manner. (3) Three-Stage-Training: Training
our models as explained in section E.


