
SubICap: Towards Subword-informed Image Captioning
Supplementary Material

Naeha Sharif, Mohammed Bennamoun, Wei Liu
University of Western Australia

Western Australia
naeha.sharif@research.uwa.edu.au

{mohammed.bennamoun,wei.liu}@uwa.edu.au

Syed Afaq Ali Shah
Murdoch University
Western Australia

Afaq.Shah@murdoch.edu.au

1. Image Captioning Model
In this work, we adopt the image captioning model pro-

posed by Herarde et al., [2]. It uses a Transformer based
encoder-decoder model. The encoder consists of six layers,
where each layer is composed of a multi-head self-attention
layer and a feed-forward neural network. The multi-head
self-attention layer consists of eight identical heads, each of
which computes a query Q, key K and value V for the N
token embeddings, given by:

Q = YWQ,K = YWK ,K = YWV (1)

where, Y is the input token matrix containing the visual-
appearance embeddings {y1, y2, .., yN} and WQ, WV , and
WK are the learned projections. The attention weight ma-
trix θ for the visual features is formulated as:

θA =
QKT

√
dk

(2)

where, θA is an attention weight matrix (N × N), whose
element ωlm

A corresponds to the attention weights between
the lth and mth tokens. θA is modified by incorporating
relative geometric features {g1, g2, ..., gN} of objects. The
visual appearance-based attention weights ωlm

A between the
lth and mth object are multiplied by geometric attention
weights, given by:

ωlm
G = ReLU(Emb(λ(l,m))WG) (3)

where, Emb(.) computes a positional embedding, WG is a
transformation matrix and λ(l,m) is a displacement vector
corresponding to objects l and m. λ(l,m) for an object pair
is calculated using geometric features, such as center co-
ordinates (xl, yl), (xm, ym)), widths (wl, wm) and heights
(hl, hm).

λ(l,m) = log

(
|xl − xm|

wl

)
, log

(
|yl − ym|

hl

)
,

log

(
wm

wl

)
, log

(
hm
hl

)

The geometric and visual-appearance attention weights
ωlm
G and ωlm

A respectively are combined to form visual-
geometric attention wights ωlm, which are computed as:

ωlm =
ωlm
G exp(ωlm

A)∑N
i=1 ω

li
G exp(ωli

A)
(4)

The output of each attention head is formulated as:

Head(Y) = softmax(θ)V (5)

where, θ is an NxN matrix, whose elements are the visual-
geometric attention wights ωlm. The outputs of all the at-
tention heads (8 in our case) are concatenated and then mul-
tiplied to a learned projection matrixWo, which is given by:

MultiHead(Q,K, V) = Concat(Head1, ..,Head8)Wo

(6)

Next, the output of the self-attention layer (MultiHead) is
fed to a point-wise feed-forward network (FFN). Similar to
[2] and [6], the FFN consists of two linear projection layers
with a ReLU activation function in between.

FFN(z) = max(0, zW1 + b1)W2 + b2 (7)

The decoder then uses the output embeddings q = (q1,
q2,... qN) generated from the last encoder layer, to generate
a sequence of subwords. We keep the encoder and decoder
architecture of the transformer identical to [2] and refer the
reader to [2] and [6] for more details on the transformer
architecture.

2. Additional Pre-processing Details
The conventional method of forming vocabulary for the

image captioning models is; to first segment the captions
into tokens (words in this case) using whitespace, and then
filtering off tokens that occur less than a threshold value

9876

(generally 3-5). The filtered tokens are then used as vo-
cabulary. Moreover, captions longer than a certain token
length are truncated. We observe that a variation in vocabu-
lary size and caption length impacts the model performance,
and thus these parameter have to be chosen carefully. For
our experiments, we truncate captions longer than 16 words,
therefore, the maximum length of training captions in case
of the baseline is 16 words. For the baseline model, each to-
ken corresponds to a word, whereas for SubICap which uses
subword segmentation, each token might not correspond to
a word, rather a subword. The maximum sequence length in
case of subword modelling is longer than word-level mod-
eling, as shown in Table 1

In our case of subword tokenization, we notice that larger
vocabulary size, results into shorter sequences compared,
shown in Table 1. Therefore, we adopt a filtering method to
cater for overly long sequence of tokens (which are a small
percentage of training examples). We select a token thresh-
old τ such that 99% of the captions are unaltered, whereas
the remaining 1% are truncated to length τ . The value of τ
varies with the vocabulary size i.e., ranging between 19 to
38 for our models.

For training our captioning model, the tokenized cap-
tions are converted to sequence of ids using vocabulary to
id mapping. We reserve vocabulary ids for special symbols
such as EOS (End Of Sentence) and UNK (unkown). Dur-
ing inference the sequence of ids are mapped to a sequence
of tokens, which are then detokenized to obtain the output
captions.

De-tokenzation is used when the captioning model gen-
erates a sequence of tokens as output. Those tokens are fed
to the detokenizer to transform them into a caption. Follow-
ing is an arbitrary example of a tokenized and detokenized
caption:

• Tokenized Caption: [the][cat][is][sleep][ing]

• De-tokenized Caption: the cat is sleeping

Since white-space is preserved in the tokenized caption, it
makes it very easy to de-tokenize and reproduce the raw
caption with the following python script:

Models
Vocabulary

Size

Max. Sequence
Length

(# of tokens)

Baseline 9,486 16
Ours-3k 3,078 19
Ours-2k 2,079 21
Ours-1k 1,085 24

Ours-500 579 31
Ours-300 335 38

Table 1. Shows the comparison between the models in terms of the
maximum training sequence length.

Models
Unique

Captions
(%age)

Trainable
Parameter

Max. Sequence
Length

(# of tokens)

Baseline 69.0 54.9M 16
SubICap-char 75.3 45.3M 82
SubICap-bpe 74.0 46.3M 25
SubICap-1k 74.8 46.3M 24

Table 2. Comparison between models which differ in terms of the
tokenization of training captions.

detok = ‘’.join(tokens).replace(‘ ’, ‘ ’)

3. Comparison between Various Tokenization
Methods

Tokenization refers to the process of segmenting stream
of characters into individual units, known as tokens. The
sequence of tokens are then mapped to ids, in order to train
the language model. Tokenization is one of the most impor-
tant steps in language modeling because it impacts the way
a model sees the textual input, i.e., as a sequence of words,
subwords or characters.

Tokenization can help reduce the vocabulary size [3] and
increase the training examples for each token in the vocabu-
lary. Domingo et. al, [1] investigated the impact of various
tokenizers on machine translation quality. They found that
tokenizers had significant impact on the quality of trans-
lations. Here, we experiment with different tokenization
methods: word-level, character-level and subword-level.

For word-level tokenization, we use a standard whites-
pace tokenizer, which segments the words in captions us-
ing whitespace as a separator. For character and subword-
level tokenization, we use SentencePiece [4], and specify
the modes in the tool. For example, in order to perform
character-level segmentation we specify mode=‘char’, and
a vocabulary= 95 (since there are 95 printable ASCII char-
acters, which include alphabets, numbers and punctuation
marks etc.,). For subword segmentation we compare two
algorithms, 1) BPE and 2) Unigram Language Model.

Results of our experiments are reported in Table 3 and
Table 2, which show the impact of different tokeniza-
tion methods on the metric scores, vocabulary size, train-
able model parameters and percentage of unique captions.
SubICap-1k, which uses Unigram Language Model for sub-
word tokenization, achieves the best metric scores amongst
all. SubICap-1k also strikes a balance between maximum
sequence length and number of model parameters com-
pared to character and word-level tokenization-based meth-
ods (Baseline and SubICap-char)

9877

Models Segment/token Tokenizer Vocab size B1 B2 B3 B4 M R C S

Baseline Word Standard Whitespace 9,486 75.2 58.8 44.6 33.7 27.5 55.5 111.0 21.0
SubICap-bpe Subword BPE 1,076 75.8 59.7 46.1 35.5 29.7 56.6 114.4 21.1
SubICap-char Subword Character-based 95 75.4 59.2 45.5 34.8 29.2 55.7 113.0 21.0

SubICap-1k Subword Unigram Language Model 1,085 76.7 60.8 47.1 36.2 29.7 56.9 116.1 21.2
Table 3. Impact of various segmentation algorithms on the metric performance.

Figure 1. Qualitative comparison of captions generated by our model (SubICap-1k) and baseline for images in the MSCOCO offline test
set. Mistakes are highlighted in red color.

4. Qualitative Comparison
In order to perform a qualitative comparison between our

proposed model (SubICap-1k) and the baseline, we provide
the examples of captions generated by these models in Fig-
ure 1, Figure 2, Figure 3, and Table 4. Both models (base-
line and SubICap) are fine-tuned for CIDEr-D score, and
use a beam size of 5 during inference. Table 4 shows ex-
amples of captions which differ in lexical as well as se-
mantic quality, however, still achieve an equal CIDEr-D
score. Figure 2 and Figure 3 show comparison between
captions which differ in terms of the lexical quality. Our
model achieved a higher METEOR score than the baseline,
which reflects that the captions generated by our model are
lexically sound [5]. The examples shown in Figure 2 and
Figure 3, further strengthen our point of view.

9878

Figure 2. Qualitative comparison of captions generated by our model (SubICap-1k) and baseline for images in the MSCOCO offline test
set. Captions generated by our model are lexically better compared to the ones generated by the baseline

Figure 3. More examples of captions generated by our model (SubICap-1k) and baseline for images in the MSCOCO offline test set.
Captions generated by our model are lexically better compared to the ones generated by the baseline

9879

Images Captions and Scores Ground Truth Captions

Ours: ‘a man on a horse herding a
herd of sheep’
[C: 179.1, M: 31.1, S: 34.4]

Baseline: ‘a man riding a horse
next to a herd of sheep’
[C: 179.1, M: 30.8, S: 20.6]

GT1: ‘a herd of sheep walking
across green grass’
GT2: ‘a man on a horse corralling
sheep with his two dogs’
GT3: ‘a man and two dogs gather-
ing a herd of sheep’

Ours: ‘a woman riding a horse
jumping over an obstacle’
[C: 154.3, M: 93.6, S: 20.6]

Baseline: ‘a woman riding a horse
jumping over two pink cones’
[C: 154.3, M: 93.6, S: 12.9]

GT1: ‘a young person ridding a
horse jumps a gate in a competition’
GT2: ‘a woman is riding a horse as
it jumps over a bar’
GT3: ‘a woman riding a horse
jumps over an obstacle’

Ours: ‘a pizza with peppers and
olives in a box’
[C: 93.6, M: 22.6, S: 17.1]

Baseline:‘a pizza with olives and
cheese on a table’
[C: 93.6, M: 13.8, S: 11.4]

GT1: ‘large pizza covered in pep-
peroni, olives, peppers, onions and
mushrooms’
GT2: ‘pizza with everything on it
sitting on counter’
GT3: ‘a very big pizza that was just
made to order’

Ours: ‘a young boy holding a base-
ball bat in a batting cage’
[C: 152.9, M: 27.3, S: 19.1]

Baseline: ‘a young boy holding a
baseball bat at a ball’
[C: 152.9 , M: 21.1, S: 19.3]

GT1: ‘young boy ready to bat in a
little league uniform’
GT2: ‘a boy in a helmet and uni-
form holding a bat’
GT3: ‘a boy holding a baseball bat
next to fence and wearing a baseball
helmet’

Ours: ‘ a clock on top of a mantle
in front of a wall’
[C: 102.3, M: 19.0, S: 26.3]

Baseline: ‘a clock sitting on top of
a table with a statue’
[C: 102.3 , M: 20.0, S: 17.6]

GT1: ‘a golden clock rhino sculp-
ture sitting on top of a fireplace’
GT2: ‘a clock on top of a rhino on
a shelf’
GT3: ‘gold clock on a base shaped
like a rhinoceros and a sign on a
shelf in front of a painting’

Table 4. A comparison of captions generated by our model vs. baseline. Scores of few commonly used metrics such as CIDEr-D (C),
METEOR (M), and SPICE (S) are provided with the generated captions. The captions are generated by models (baseline and SubICap)
fine-tuned for CIDEr-D score, setting beam size to 5.

9880

References
[1] Miguel Domingo, Mercedes Garcıa-Martınez, Alexandre

Helle, Francisco Casacuberta, and Manuel Herranz. How
much does tokenization affect neural machine translation?
arXiv preprint arXiv:1812.08621, 2018.

[2] Simao Herdade, Armin Kappeler, Kofi Boakye, and Joao
Soares. Image captioning: Transforming objects into words.
In Advances in Neural Information Processing Systems, pages
11135–11145, 2019.

[3] Taku Kudo. Subword regularization: Improving neural net-
work translation models with multiple subword candidates.
arXiv preprint arXiv:1804.10959, 2018.

[4] Taku Kudo and John Richardson. Sentencepiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing. arXiv preprint arXiv:1808.06226,
2018.

[5] Naeha Sharif, Lyndon White, Mohammed Bennamoun, Wei
Liu, and Syed Afaq Ali Shah. Lceval: Learned composite
metric for caption evaluation. International Journal of Com-
puter Vision, 127(10):1586–1610, 2019.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

9881

