6. Appendix

CamVid

ACC 10U ECE (x10-3) AUSE (x10-2)
Best Single | 0.900 0.641 8.27 4.46
Teacher 0.904 0.650 5.42 3.02
Student 0.909 0.653 2.96 1.91

NYU

RMSE REL ECE (x10-3)  AUSE x10-2)
Best Single | 0.543  0.149 70.8 6.11
Teacher 0.510 0.140 56.4 5.58
Student 0.530 0.144 56.3 5.93

Table 4: Performance of teacher and student model when a Deep Ensemble is used as the teacher. “Best Single” represents
the best NN among all in the ensemble in terms of IOU/RMSE. For “Best Single”, only the aleatoric uncertainty is used to
compute uncertainty metrics.
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Figure 9: Ablation study conducted using VOC2012 dataset. (a-b) Performance of the student model when the number of
samples from the teacher model are varied at each mini-batch. As seen in the plots, the performance is generally insensitive
to the choice of sample size. Using larger number of samples only brings slight improvement in performance up to a point.
(c) Performance of student model against \, the weight put on the teacher loss (See Eqn. 11). As seen clearly, introducing
the teacher loss improves the performance of the student and the student performs the best when A = 1.
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Figure 10: Additional example predictions on CamVid.
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Figure 11: Example predictions on the Cityscapes dataset under distribution shift using models trained with CamVid.
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Figure 12: Additional example predictions on Pascal VOC2012.
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Figure 13: Additional example predictions on NYU.
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Figure 14: Example predictions on KITTI.
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Figure 15: Example predictions on CamVid when using deep ensemble as the teacher model.
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Figure 16: Example predictions on NYU when using deep ensemble as the teacher model.



