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1. Proofs
1.1. Convolution is all you need

In the paper we consider trackers of the following form

h(z, x) = φX(x) ? φZ(z) (1)

where φX and φZ are parameterized with feed-forward neu-
ral networks.

Theorem 1. A function given by Equation 1 is equivariant
under a transformation L from group G if and only if φX
and φZ are constructed from G-equivariant convolutional
layers and ? is the G-convolution.

Proof. Let us fix z = z0 and introduce a function hX =
h(x, z0) = φX(x)?φZ(z0). This function is a feed-forward
neural network. All its layers but the last one are contained
in φX and the last layer is a convolution with φZ(z0). Ac-
cording to [2] a feed-forward neural network is equivariant
under transformations fromG if and only if it is constructed
fromG-equivariant convolutional layers. Thus, the function
hX is equivariant under transformations from G if and only
if

• The function φX is constructed from G-equivariant
convolutional layers

• The convolution ? is the G-convolution

If we then fix x = x0, we can show that a function
hZ = h(x0, z) = φX(x0) ? φZ(z) is equivariant under
transformations from G if and only if

• The function φZ is constructed from G-equivariant
convolutional layers

• The convolution ? is the G-convolution

The function h is equivariant under G if and only if both
the function hX and the function hZ are equivariant.

Figure 1: Left: two samples from the simulated sequence.
The input image is a translated and cropped version of the
source image. The output is the heatmap produced by the
proposed model. The red color represents the place where
the object is detected. Right: correspondence between the
input and the output shifts.

1.2. Non-parametric scale-convolution

Given two functions f1, f2 of scale and translation the
non-paramteric scale convolution is defined as follows:

[f1 ?H f2](s, t) = Ls−1 [Ls[f1] ? f2](t) (2)

Lemma 1. A function given by Equation 2 is equivariant
under scale-translation.

Proof. A function given by Equation 2 is equivariant under
scale transformations of f1, indeed

[Lŝ[f1] ?H f2](s, t) = Ls−1 [Lsŝ[f1] ? f2](t)

= LŝL(sŝ)−1 [Lsŝ[f1] ? f2](t)

= Lŝ[f1 ?H f2](sŝ, t)

(3)

For a pair of scale and translation s, t̂ we have the fol-
lowing property of the joint transformation LsTt̂ = Tt̂sLs

from [3], where Tt̂ is the translation operator defined as
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Figure 2: The visualization of the weight initialization scheme from a pretrained model. Dashed connections are initialized
with 0.

Tt̂[f ](t) = f(t− t̂). Now we can show the following:

[Tt̂[f1] ?H f2](s, t) = Ls−1 [Ls[Tt̂[f1]] ? f2](t)

= Ls−1 [Tt̂sLs[f1] ? f2](t)

= Ls−1Tt̂s[Ls[f1] ? f2](t)

= Tt̂Ls−1 [Ls[f1] ? f2](t)

= Tt̂[f1 ?H f2](t)

(4)

Therefore, a function given by Equation 2 is also equivari-
ant under translations of f1. The equivariance of the func-
tion with respect to a joint transformation follows from the
equivariance to each of the transformations separately [3].

We proved the equivariance with respect to f1. The proof
with respect to f2 is analogous.

2. Weight initialization
The proposed weight initialization scheme from a pre-

trained model is depicted in Figure 2.

3. Experiments
3.1. Padding

We conduct an experiment to verify that the proposed
padding technique does not violate translation equivariance
of convolutional trackers. We choose an image and select
a sequence of translated and cropped windows inside of it.
We process this sequence with a deep model that consists of
the proposed convolutional layers and follows the inference
procedure described in [4]. We derive the predicted location
of the object and compare its value to the input shift. Fig-
ure 1 demonstrates that the input and the output translations
have nearly identical values.

3.2. Translating-Scaling MNIST

For both T-MNIST and S-MNIST, we use architectures
described in Table 1. 2D BatchNorm and ReLU are inserted
after each of the convolutional layers except the last one.

Stage SiamFC SE-SiamFC

Conv1
[
3× 3, 96, s = 2

]
Conv2

[
3× 3, 128, s = 2

]
Conv3

[
3× 3, 256, s = 2

]
Conv4

[
3× 3, 256, s = 1

]
Connect. Cross-correlation Non-parametric

scale-convolution

# Params 999 K 999 K

Table 1: Architectures used in T/S-MNIST experiment. All
convolutions in SE-SiamFC are scale-convolutions.

We do not use max pooling to preserve strict translation-
equivariance.

We train both models for 50 epochs using SGD with a
mini-batch of 8 images and exponentially decay the learn-
ing rate from 10−2 to 10−5. We set the momentum to 0.9
and the weight decay to 0.5−4. A binary cross-entropy loss
as in [1] is used. The inference algorithm is the same for
both SiamFC and SE-SiamFC and follows the original im-
plementation [1].

3.3. OTB and VOT

For OTB and VOT experiments we used architectures
described in Table 2. We use the baseline [4] with Cropping
Inside Residual (CIR) units. SE-SiamFC is constructed di-
rectly from the baseline as described in the paper. In Table 2
the kernel size refers to the smallest scale σ = 1 in the net-
work. The sizes of the kernels, which correspond to bigger
scales are 9 × 9 for Conv1 and 5 × 5 for other layers. Fig-
ure 3 gives a qualitative comparison of the proposed method
and the baseline.



Stage SiamFC+ SE-SiamFC

Conv1
[
7× 7, 64, s = 2

] [
7× 7, 64, s = 2

]

Conv2

max pool
[
2× 2, s = 2

]
 1× 1, 64
3× 3, 64
1× 1, 256

× 3

1× 1, 64, i = 2
3× 3, 64
1× 1, 256

× 3

Conv3

1× 1, 128
3× 3, 128
1× 1, 512

× 3

1× 1, 128, sp
3× 3, 128
1× 1, 512

× 3

Connect. Cross-correlation
Non-parametric

scale-convolution

# Params 1.44 M 1.45 M

Table 2: Architectures used in OTB/VOT experiments. All
convolutions in SE-SiamFC are scale-convolutions. s refers
to stride, sp denotes scale pooling, i — is the size of the
kernel in a scale dimension.
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Figure 3: Qualitative comparison of SE-SiamFC with SiamFC+ on VOT2016/2017 sequences.


