Appendix : A Variational Information Bottleneck Based Method to Compress
Sequential Networks for Human Action Recognition

A. Derivation of Eq. 2

The Objective function in Eq. 1 can be broken down into
four parts, each corresponding to a specific LSTM gate as
follows:

L=Li+Ly+Lo+L,

All the gates primarily differ only in the associated pa-
rameters of the corresponding LSTM equations. Thus, the
loss functions corresponding to these gates take similar
forms. Thus, consider expanding the loss function corre-
sponding to one of the LSTM gates as follows:

Ly =pIKkY,v) - I(kT,Y)
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Now, to simplify L2, we marginalize (Y | kT') as fol-

lows:

g(Y | KT) = / g(Y, b7 | KT)dnT
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= iyt pcr) [a(Y | B7)]

Taking log on both sides and using Jensen’s Inequality,
we get

log a(Y | k) = Ep, pgurpery | log a(Y | h7)]

Using above equation in Lo we get:

Lio = Eix,y}~D vep(v]X) /p(kT | v)logq (Y | k" )dk”
= E(x,Y}~D,vep(v[X),p(kr|v) [log q(Y | hT)]
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B. Derivation of Eq. 6

The KL term L, can be simplified using gaussian dis-
tributional forms specified in Eq. 4 and Eq. 5 as follows:

L1 = PE{X,Y}~D,vep(vIX) {DKL [p (" | v)llg (k") ] }
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Assuming &y is optimally learnt from the data, we can
find optimal value of &;; by taking gradient of above equa-
tion with respect to &, and equating to zero. The optimal
value is given by:
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Putting £ 7* in L1, we get:
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where, Yy; > 0 by Jensen’s Inequality and is given by:

g =108 (Evmpio [ i ()] ) = Bumpio [ 108 (i (v)?)]

Therefore, loss function corresponding to a gate be-
comes:

Li=Lr1 — L2
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The overall loss function for VIB-LSTM can be obtained
by summing up the losses for individual gates as follows:
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C. Derivation of Eq. 11 and Eq. 12

The Objective function in Eq. 10 can be simplified as
follows:

Ly =Bul(v,x) —1I(v,Y)
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We first simplify the KL term using gaussian distribu-
tional forms specified in Eq. 12 as follows:
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Assuming &, ; is optimally learnt from the data, we can
find optimal value of &, ; by taking gradient of above equa-
tion with respect to §,; and equating to zero. The optimal
value is given by:
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Figure 1. (a) Generation of VIB mask z~A\/(u, o) where the pa-
rameters y and o are trainable during learning of the mask but are
not required during inference, (b) Basic ConvLSTM architecture
with VIB layers used in our experiments. Fully connected layers
at the end are not shown.

where, ,; > 0 by Jensens’s Inequality and is given by:

Py = log (E{X,Y}~D [fkj(X)ZD
—Exyi~p [log (fkj(X)Q)}
Now, to simplify £, we marginalize (Y | v) as fol-
lows:
oY )= [(XBT [v)ant
— [ 6" vy | BT )an”
= EhTNp(hT\v) {Q(Y | hT)}

By using Jensen’s inequality on the equation above and
putting in £,2, we get the simplified £,2 as follows:

Lz = E{X,Y}ND,VNP(V\X),hTNP(hT|V) {log q(Y | hT)}

D. Architecture

This section contains figures for better visualization of
the approach and the pruning strategy used.

Weights matrices in LSTM

Figure 2. Figure shows the intrinsic sparse structure of LSTM pa-
rameter matrix (Wen et al. [24]). A single redundant unit in the
LSTM hidden vector is associated with a significant number of
redundant paramters in the LSTM parameter matrix.

E. Experiment results with CNN-LSTM archi-
tecture for all datasets

This section contains the tables showing detailed exper-
imental results obtained using VIB-LSTM.

Input size | Hidden state size | LSTM parameters | Accuracy(%)
2048 2048 33.57TM 98.6
266 2048 18.97M 98.53
88 2048 17.5M 98.53
33 2048 17.0M 98.2
28 2048 17.0M 97.5
2048 674 7.34M 98.65
2048 224 2.35M 98.65
2048 64 0.541M 98.53
2048 8 65856 98.53
2048 6 65856 96.53
266 224 440832 98.65
88 64 39424 98.65
33 12 2256 98.2
28 8 1216 97.1

Table 1. Compressed models trained with UCF11. Each row de-
picts a compressed model with corresponding details.

Input size | Hidden state size | LSTM parameters | Accuracy(%)

2048 512 5.24M 93.15
1024 512 3.14M4 93.15
256 512 1.57M 93.15
96 512 1.24M 93.15
64 512 1.18M 92.62
46 512 1.14M 92.28
31 512 1.11IM 91.59
96 400 0.796M 93.15
96 297 0.469M 93.15
96 198 0.234M 92.04
96 154 0.15M 92.04
96 88 0.065M 91.5

Table 2. Compressed models trained with UCF101. Each row de-
picts a certain compressed model with corresponding dimensions
of the LSTM matrices and validation accuracy.



Input size | Hidden state size | LSTM parameters | Accuracy(%)
2048 2048 33.570816M 68.34
1024 2048 25.182208M 68.16

149 2048 18.014208M 68.16
96 2048 17.580032M 68.16
64 2048 17.317888M 67.32
149 512 1.357824M 68.32
96 512 1.24928M 68.32
96 382 0.73344M 68.16
96 277 0.4155M 68.16
96 140 0.13328M 65.2
64 512 1.183744M 67.32
64 382 0.684544M 67.32

Table 3. Compressed models-TS-VIB-LSTM trained with
HMDB51. Each row depicts a certain compressed model with
corresponding dimensions of the LSTM matrices and validation
accuracy.

F. Datasets

This section contains samples from all the three datasets
used. Variations in various parameters like object appear-
ance, camera position, background and object scale can be
seen from the figures which makes these datasets challeng-
ing to work on.
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Figure 4. Sample frames from videos from UCF101 dataset.
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Figure 5. Sample frames from videos from HMDBS51 dataset.

We have used standard datasets of which UCF101 and
HMDBS51 have typical train/test splits. For UCF11, we used
60:40 train/test splits with classes uniformly distributed.
The datasets’ sources are referred to in the main text.



