
Supplementary Materials
In this supplementary material, we provide additional

details that are necessary for reproducing our results as well
as additional results that we could not include in the paper
due to the page limit.

A. Additional Implementation Details
Table 1 and Table 2 shows a detailed architecture of our

TrustMAE and the discriminator used to train it.
As a pre-processing step, we resize the images to 256×

256 and scaled the values to be within−1 to 1. During train-
ing, we augment our training data using horizontal flips,
vertical flips, and random rotations, except for some prod-
ucts, such as cable, metal nut, and transistors, that have
fixed orientations, and will be considered defective if it is
transformed.

To encourage sharper reconstructions, our model opti-
mizes for a weighted sum of several loss terms, as shown in
Eq. 9.

Ltotal = λrecLrec + λsmLsm + λvggLvgg + λGANLGAN

+ λfeatLfeat + λmarginLmargin + λtrustLtrust

(9)

We set the loss weights as follows λrec = 10, λsm =
10, λvgg = 10, λGAN = 1, λfeat = 10. Each of the loss
terms are detailed below:

• Reconstruction loss encourages the output to be close
to the input image. We implement it as the mean ab-
solute error between the input and output, as shown
below.

Lrec =
1

HWC

∑
h,w,c

|x− x̂| (10)

• SSIM loss matches the luminance, contrast, and struc-
ture between two images by matching the mean, stan-
dard deviation, and covariance of their patches, as
shown in Eq. 11

Lsm(p, q) =
(2µpµq + c1)(2σpq + c2)

(µ2
p + µ2

q + c1)(σ2
p + σ2

q + c2)
, (11)

where µp, µq are means of patch p and q, σp, σq are
the standard deviations of the patch p and q, σpq is
the covariance between the two patches, and c1, c2, c3
are constants that prevents numerical issues caused
by the divisions. We use a patch size of 11 × 11
and set the constants to their recommended defaults
c1 = 0.012, c2 = 0.032, c3 = c2/2.

• VGG feature loss is a form of perceptual loss that en-
courages feature representations to be similar rather
than exact pixel matching [18]. It is defined in Eq. 12

Lvgg =

L∑
l=1

λ(l)‖ψ(l)(x)− ψ(l)(G(x))‖1, (12)

where ψ(l)(x) denotes the output at the l-th layer of a
pre-trained VGG-19 network given an input x, G(x)
denotes the reconstructed output of the auto-encoder,
and λ(l) are hyperparameters that adjusts the relative
importance of each layer l. The lower layers preserves
low level features such as edges, while higher lay-
ers preserves high level features such as texture and
spatial structure. We used the outputs of conv1 2,
conv2 2, conv3 4, conv4 4, and conv5 4 layers with
layer weights λ(1) = 1/32, λ(2) = 1/16, λ(3) =
1/8, λ(4) = 1/4, λ(5) = 1.

• GAN loss [13] introduces a separate discriminator net-
work Ddisc that aims to distinguish whether an input
image looks real or fake. Our memory auto-encoder
G is jointly optimized with the discriminator Ddisc in
an adversarial fashion wherein the discriminator clas-
sifies the synthesized reconstructions as fake, while
the memory auto-encoder tries to produce images that
fools the discriminator into classifying it as real. We
adopt the hinge loss [45] formulation as defined in
Eq. 13 for the discriminator and Eq. 14 for the auto-
encoder G.

L
(Disc)
GAN =− E[min(0,−1 +Ddisc(x))]

− E[min(0,−1−Ddisc(G(x)))]
(13)

L
(G)
GAN = −E[Ddisc(G(x))] (14)

• GAN feature loss [42, 43] is similar to the VGG fea-
ture loss but uses the intermediate layers of the dis-
criminator instead of a VGG network, as shown in Eq.
15, where D(l)

disc denotes the intermediate output of the
discriminator at layer l. Wang et al. [42] showed that
matching the statistics of real images through the dis-
criminator features at multiple scales help stabilize the
adversarial training. Another advantage is that the dis-
criminator is trained on the dataset that we care about,
which means that the features we are matching are
more appropriate for the dataset we are using [43], as
opposed to using features extracted by the VGG net-
work that were optimized for ImageNet.



Lfeat =

L∑
l=1

‖D(l)
disc(x)−D

(l)
disc(G(x))‖1 (15)

B. Baselines Implementation Details
We adopted most of the baseline performance values

from Bergmann et al. [2], Dehaene et al. [6], Huang et
al. [16], and Liu et al. [22].

For the Memory auto-encoder (MemAE) [12] baseline
(which our model was built on top of), we trained the model
patterned after their publicly available code1. We adapted
their network architecture and changed the 3D convolutions
to 2D. We trained the network on images sized 256 × 256
for 200 epochs using the Adam optimizer with a learning
rate of 1e−4. The memory size was set to 128 with a latent
dimension of 256.

The baselines AE-SSIM [3] and AE-L2 [2] follows the
setting of Dehaene et al. [6]. They used the network ar-
chitecture of Bergmann et al. [3] with a latent dimension
of 100 and trained for 300 epochs with a learning rate of
1e−4. The images were resized to 128 × 128 except for
textures, which required larger resolutions due to high fre-
quency content, thus, the texture images were first resized
to 512×512, before cropping random patches of 128×128
for training.

C. Additional Results
Table 3 shows the results of our ablation study on each

of the classes in MVTec dataset, while Table 4 shows the
results of our comparison with the baselines on each of the
classes in the MVTec dataset. Overall, our method with
both trust region memory updates and spatial perceptual
distance achieves competitive performance across a large
range of noise levels.

We also show additional qualitative results in Figures 1,
2, and 3. We can observe that the large values in the error
map computed with our spatial perceptual distance matches
well with the ground truth defect segmentation.

1https://github.com/donggong1/memae-anomaly-detection



Table 1: Network architecture of our TrustMAE. The abbreviations are as follows: N denotes number of filters, K denotes
kernel size, S denotes stride, P denotes padding, and CBN denotes conditional batch normalization.

Input→ Output Shape Layer Information

Encoder

(h,w, 3)→ (h,w, 32) Conv-(N32, K7× 7, S1, P3), CBN, ReLU

(h,w, 32)→ (h2 ,
w
2 , 64) Conv-(N64, K3× 3, S2, P1), CBN, ReLU

(h2 ,
w
2 , 64)→ (h4 ,

w
4 , 128) Conv-(N128, K3× 3, S2, P1), CBN, ReLU

(h4 ,
w
4 , 128)→ (h8 ,

w
8 , 256) Conv-(N256, K3× 3, S2, P1), CBN, ReLU

(h8 ,
w
8 , 256)→ ( h

16 ,
w
16 , 512) Conv-(N512, K3× 3, S2, P1), CBN, ReLU

( h
16 ,

w
16 , 512)→ ( h

32 ,
w
32 , 512) Conv-(N512, K3× 3, S2, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Residual Block: Conv-(N512, K3× 3, S1, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Residual Block: Conv-(N512, K3× 3, S1, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Residual Block: Conv-(N512, K3× 3, S1, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Memory Module ∈ R512×M

Decoder

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Residual Block: Conv-(N512, K3× 3, S1, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Residual Block: Conv-(N512, K3× 3, S1, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

32 ,
w
32 , 512) Residual Block: Conv-(N512, K3× 3, S1, P1), CBN, ReLU

( h
32 ,

w
32 , 512)→ ( h

16 ,
w
16 , 512) ConvTrans-(N512, K4× 4, S2, P1), CBN, ReLU

( h
16 ,

w
16 , 512)→ (h8 ,

w
8 , 256) ConvTrans-(N256, K4× 4, S2, P1), CBN, ReLU

(h8 ,
w
8 , 256)→ (h4 ,

w
4 , 128) ConvTrans-(N128, K4× 4, S2, P1), CBN, ReLU

(h4 ,
w
4 , 128)→ (h2 ,

w
2 , 64) ConvTrans-(N64, K4× 4, S2, P1), CBN, ReLU

(h2 ,
w
2 , 64)→ (h,w, 32) ConvTrans-(N32, K4× 4, S2, P1), IN, ReLU

(h,w, 32)→ (h,w, 3) Conv-(N3, K7× 7, S1, P3), Tanh

Table 2: Network architecture of our discriminator.

Input→ Output Shape Layer Information

(h,w, 3)→ (h2 ,
w
2 , 32) Conv-(N32, K4× 4, S2, P1), LeakyReLU-(0.2)

(h2 ,
w
2 , 32)→ (h4 ,

w
4 , 64) Conv-(N64, K4× 4, S2, P1), LeakyReLU-(0.2)

(h4 ,
w
4 , 64)→ (h8 ,

w
8 , 128) Conv-(N128, K4× 4, S2, P1), LeakyReLU-(0.2)

(h8 ,
w
8 , 128)→ ( h

16 ,
w
16 , 256) Conv-(N256, K4× 4, S2, P1), LeakyReLU-(0.2)

( h
16 ,

w
16 , 256)→ ( h

32 ,
w
32 , 512) Conv-(N512, K4× 4, S2, P1), LeakyReLU-(0.2)

( h
32 ,

w
32 , 512)→ ( h

64 ,
w
64 , 1024) Conv-(N1024, K4× 4, S2, P1), LeakyReLU-(0.2)

( h
64 ,

w
64 , 1024)→ ( h

64 ,
w
64 , 1) Conv-(N1, K3× 3, S1, P1)



Table 3: Detailed ablation study showing the performance of the different components of our model on each of the products
in the MVTec dataset.
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ours w/o PD w/o TR 5% 82.61 88.28 71.17 75.16 80.82 96.83 91.04 95.57 64.96 77.29 75.13 83.73 95.56 65.25 94.23 84.17
ours w/o SP 5% 90.73 99.84 89.03 78.96 91.26 97.78 96.88 97.92 88.07 75.76 79.18 96.76 99.44 82.08 99.15 88.83
ours w/o PD 5% 82.03 96.72 70.58 73.37 80.32 91.27 93.96 94.14 59.28 82.93 82.41 76.11 94.44 53.92 94.74 86.22
ours w/o TR 5% 92.51 99.13 90.94 79.04 93.54 98.41 97.22 99.48 88.16 86.99 79.25 99.44 99.44 82.42 100 94.26
ours 5% 92.39 99.37 92.77 78.96 93.47 98.1 98.82 97.27 86.55 84.77 81.73 99.01 96.67 84 100 94.42

ours w/o PD w/o TR 10% 81.27 84.84 69.55 71.64 80.78 95.08 90.69 93.1 59.56 78.56 76.77 81.54 94.44 63.92 92.87 85.66
ours w/o SP 10% 90.02 98.59 88.21 77.8 92.17 96.83 97.36 95.57 87.59 76.82 77.49 95.98 98.33 79.83 99.47 88.32
ours w/o PD 10% 81.14 94.53 72.19 76.55 79.26 89.37 91.94 87.76 62.03 81.09 76.33 79 92.78 57.25 91.85 85.14
ours w/o TR 10% 91.8 99.06 89.84 79.95 91.95 98.58 97.99 98.05 88.64 85.77 77.13 97.46 97.22 81.08 99.83 94.47
ours 10% 91.9 99.38 91.2 77.02 93.77 98.41 99.03 97.59 87.22 83.83 78.93 98.87 97.22 81.33 99.83 94.83

ours w/o PD w/o TR 15% 79.83 85.31 71.86 70.11 75.46 93.65 90.76 92.51 59.09 71.03 74.69 79.35 92.22 63.83 93.72 83.81
ours w/o SP 15% 89.14 97.62 87.09 76.4 90.96 95.24 96.53 95.01 87.22 75.13 76.41 95.6 97.22 80.92 98.64 87.14
ours w/o PD 15% 80.78 97.03 69.6 73.6 75.08 84.29 91.18 90.27 63.45 77.34 81.33 79.15 95.56 58.75 91.74 83.35
ours w/o TR 15% 90.38 98.89 87.12 79.1 92.10 96.67 96.67 96.88 86.27 76.98 77.45 97.32 98.33 78.08 99.15 94.72
ours 15% 91.05 99.37 89.18 73.76 91.57 98.1 99.24 97.79 87.03 82.46 75.13 97.11 98.89 82.17 100 94.01

ours w/o PD w/o TR 20% 78.8 85.94 67.02 67.86 74.92 94.15 88.12 91.67 53.88 69.92 72.45 82.45 92.78 64.83 92.02 84.02
ours w/o SP 20% 88.94 98.28 87.45 76.75 88.45 96.03 96.32 96.55 85.13 77.87 75.05 94.93 96.67 79.17 99.32 86.12
ours w/o PD 20% 79.72 93.75 66.87 73.37 73.94 85.08 92.15 89.45 60.13 79.77 80.25 79.07 94.44 53.75 90.15 83.66
ours w/o TR 20% 88.93 97.19 84.85 77.93 91.79 94.92 96.81 96.55 80.4 78.19 72.33 94.22 98.89 77.25 99.32 93.29
ours 20% 90.32 99.69 89.8 74.15 92.17 98.25 98.54 98.57 84.66 82.09 75.85 92.67 97.22 79.5 98.64 92.93

ours w/o PD w/o TR 30% 79.18 87.34 65.19 70.57 77.05 89.72 91.88 93.88 52.56 66.97 75.89 85.13 90.56 63.08 94.23 83.66
ours w/o SP 30% 87.01 96.41 86.76 75.18 89.51 92.38 95.56 92.06 81.25 75.18 74.69 95.28 91.11 73.75 99.15 86.89
ours w/o PD 30% 79.8 90.31 67.72 67.78 77.89 70.32 93.89 94.86 65.81 82.09 82.21 82.8 92.78 56.25 90.49 81.81
ours w/o TR 30% 87.1 97.03 83.2 74.91 88.68 89.21 96.04 94.66 78.41 75.08 71.41 93.23 96.11 77.42 98.47 92.67
ours 30% 89.89 97.66 89.1 75.08 91.49 95.56 97.92 96.81 83.52 81.61 76.37 93.02 97.78 78.33 100 94.06

ours w/o PD w/o TR 40% 76.96 83.81 66.47 70.42 72.72 83.71 89.93 89.71 52.65 53.64 71.57 81.61 95 61.58 95.25 86.27
ours w/o SP 40% 84.96 94.22 83.93 72.28 85.87 83.49 95.14 94.79 78.79 74.97 74.53 93.73 86.67 71.58 98.3 86.12
ours w/o PD 40% 77.82 91.88 69.59 72.13 64.74 70.16 93.06 90.49 59.94 79.72 78.49 85.41 91.11 56.17 81.32 83.04
ours w/o TR 40% 86.68 96.41 81.95 75.22 89.44 84.96 96.46 96.48 79.07 72.34 71.69 92.6 97.22 76.92 97.45 92.01
ours 40% 89.87 99.34 88.26 76.01 91.11 93.49 98.54 96.35 84.28 79.77 75.97 94.01 97.78 79.33 99.83 93.95



Table 4: Detailed performance on varying noise levels of our model compared with the baselines on each of the products in
the MVTec dataset.

Method Noise % mean AUC bo
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Ours 5% 92.39 99.37 92.77 78.96 93.47 98.1 98.82 97.27 86.55 84.77 81.73 99.01 96.67 84 100 94.42
MemAE 5% 79.68 86.93 49.63 78.42 75.76 96.98 95.62 94.27 44.31 77.33 81.95 77.68 95.37 68.58 96.49 75.85
AE-SSIM 5% 76.52 87.81 80.74 71.58 61.93 78.78 78.82 57.68 62.31 83.25 76.01 69.06 91.67 78.17 90.35 79.71
AE-MSE 5% 81.81 92.66 76.85 73.37 71.31 90.98 96.25 86.98 60.51 77.08 76.68 78.44 93.89 68.25 95.08 88.78

Ours 10% 91.9 99.38 91.2 77.02 93.77 98.41 99.03 97.59 87.22 83.83 78.93 98.87 97.22 81.33 99.83 94.83
MemAE 10% 77.26 87.34 49.66 72.77 71.73 94.28 93.8 90.45 43.65 74.08 74.12 73.29 95 64.33 95.98 78.38
AE-SSIM 10% 75.52 87.62 76.45 69.95 60.07 75.19 80.14 57.29 60.51 82.35 77.82 69.7 90.56 77.83 87.46 79.92
AE-MSE 10% 80.09 92.34 74.5 71.89 73.88 88.73 96.74 84.82 53.88 76.1 76.77 72.55 91.11 68.75 93.89 85.4

Ours 15% 91.05 99.37 89.18 73.76 91.57 98.1 99.24 97.79 87.03 82.46 75.13 97.11 98.89 82.17 100 94.01
MemAE 15% 77.89 90.78 47.54 77.1 72.44 95.39 91.06 97.74 36.74 74.97 77.97 73.17 93.33 63.03 96.32 80.77
AE-SSIM 15% 74.32 84.6 75.06 69.18 58.15 73.49 78.33 56.52 61.46 81.51 75.13 69.48 91.11 76.58 86.23 77.92
AE-MSE 15% 79.25 91.72 76.05 69.64 68.02 89.21 96.11 85.36 56.34 73.55 74.25 73.45 92.22 69.33 91.85 81.61

Ours 20% 90.32 99.69 89.8 74.15 92.17 98.25 98.54 98.57 84.66 82.09 75.85 92.67 97.22 79.5 98.64 92.93
MemAE 20% 76.05 88.33 48.12 76.06 74.82 93.01 93.77 91.3 33.21 73.04 74.13 70.61 93.89 55.11 96.15 79.15
AE-SSIM 20% 72.74 85.95 72.96 67.31 57.14 70.48 76.88 53.45 61.17 82.67 73.25 64.39 86.67 73.67 86.67 78.38
AE-MSE 20% 78.37 90.16 75.5 69.25 69.3 88.3 95.56 84.57 52.56 73.4 71.47 71.93 88.89 67.75 93.89 82.99

Ours 30% 89.89 97.66 89.1 75.08 91.49 95.56 97.92 96.81 83.52 81.61 76.37 93.02 97.78 78.33 100 94.06
MemAE 30% 74.06 85.6 48.86 76.45 63.8 91.26 91 94.29 35.92 68.12 74.22 58.87 90.93 59.31 95.81 76.4
AE-SSIM 30% 71.88 83.44 73.66 67.69 58.79 67.62 77.36 52.8 59.56 82.46 74.41 61.5 85.56 72.5 84.55 76.28
AE-MSE 30% 76.33 90.31 71.72 67.39 68.86 87.46 93.86 82.13 49.81 72.55 69.77 65.37 88.33 62.67 91.68 83.04

Ours 40% 89.87 99.34 88.26 76.01 91.11 93.49 98.54 96.35 84.28 79.77 75.97 94.01 97.78 79.33 99.83 93.95
MemAE 40% 74.62 81.51 47.35 77.07 68.57 88.73 90.37 91.62 40.56 65.1 78.56 61.36 90.37 62.14 96.49 79.53
AE-SSIM 40% 69.8 80.94 69.74 66.54 54.94 66.92 74.31 50.98 57.1 81.09 70.28 60.64 87.22 71.42 82.17 72.66
AE-MSE 40% 75.46 88.91 71.2 66.23 67.38 84.29 90.61 80.74 49.24 73.13 67.97 66.17 89.44 62.58 90.15 83.81



Input Reconstruction Error Map Ground Truth Input Reconstruction Error Map Ground Truth

Figure 1: More visual results of our proposed TrustMAE.
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Figure 2: More visual results of our proposed TrustMAE.
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Figure 3: More visual results of our proposed TrustMAE.


