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Abstract

This supplementary material contains four parts. 1) The
formal steps of ACSII and CCIM (Sec.1). 2) The implemen-
tation details of nBEKCF-D, its comparison to trackers with
ImageNet pre-trained features, and comments on C-COT,
ECO, and UPDT (Sec.2). 3) An illustration to explain how
Algorithm 2, CCIM, works exactly (Sec.4). 4) Mathematical
proof of the correctness of CCIM (Sec.5).

1. Algorithms

The formal steps of ACSII and CCIM are presented in
Algs.1 and 2, respectively.

2. Experiments of nBEKCF-D

The latest development of SRDCF is UPDT [2]. UPDT
applies the same way as SRDCF’s to relax the boundary
effect, and achieves the state-of-the-art accuracy through the
following series of improvements, i.e., (1) the interpolation
of feature resolution which was designed to improve SRD-
CF and resulted in C-COT [4]; (2) the reduction of feature
dimensionality, linear weighting of features, clustering sam-
ples, and sparse update which were developed to improve
C-COT and resulted in ECO [3]; (3) the employment of
deeper networks, ResNet50, the augmentation of training
samples, and the adaptive fusion of models with shallow
and deep features which were designed to improve ECO.
Therefore, UPDT inherits various defects of SRDCF on the
boundary effect.

In our experiments, for a fair comparison, the same type
of state-of-the-arts trackers are among the list of compared
trackers. The same type of state-of-the-arts trackers means
the top ones with the similar motivation, similar features, and
similar scale adaptation scheme to the nBEKCF’s. There-
fore, UPDT [2] from the trackers with ImageNet pre-trained
features, which, like nBEKCF, both adopt the scale-pyramid
scheme to decide proper scales of target.

Algorithm 1 Autocorrelation with Square Integral Image (ACSII)

- Input: X ∈ RM×N×D with xi,j ∈ RD’s as its elements,
m, and n, where m ≤M and n ≤ N .

- Output: X ◦X = B ∈ R(M−m+1)×(N−n+1) withBp,q’s
as its elements.

- Construct squared image
Set M ×N matrix A with Ai,j’s as its elements,

Ai,j = ‖xi,j‖22.

- Construct squared integral image I

1. I0,0 = A0,0.

2. for p = 1 to M − 1: Ip,0 = Ip−1,0 +Ap,0.

3. for q = 1 to N − 1: I0,q = I0,q−1 +A0,q .

4. for p = 1 to M − 1, q = 1 to N − 1:
Ip,q = Ip−1,q + Ip,q−1 − Ip−1,q−1 +Ap,q .

- Calculate autocorrelation X ◦ X
1. B0,0 = Im−1,n−1.

2. for p = 1 to M −m:
Bp,0 = Ip+m−1,n−1 − Ip−1,n−1.

3. for q = 1 to N − n:
B0,q = Im−1,q+n−1 − Im−1,q−1.

4. for p = 1 to M −m, q = 1 to N − n:
Bp,q = Ip+m−1,q+n−1 − Ip−1,q+n−1 −
Ip+m−1,q−1 + Ip−1,q−1.

2.1. Implementation Details

In nBEKCF-D, as in the top CF tracker with ImageNet
pre-trained features, UPDT, the Conv-1 and Block-4 feature
maps of ResNet50 are exploited, and the bilinear interpo-
lation is applied to increase the resolution of the Block-4
feature maps 4× 4 times. Linear kernel is used to construct
the kernel correlation matrices. The learning rate γ = 0.004.
The size of learning or search region is M = N = 4.5

√
mn.

ACSII and CCIM are implemented in C++ with CUDA, and



Algorithm 2 Cyclic Correlation with Integral Matrix (CCIM)

- Input: Z ∈ Rm×n×D with zs,t ∈ RD’s as its elements,
X ∈ RM×N×D, m 6M , and n 6 N .

- Output:
X � Z = [vec(Z0,09X), · · · , vec(Zm−1,n−19X)].

- Construct fundamental matrices
/* Cyclically shift fundamental calculations zs,t9X’s
to construct fundamental matrices Bs,t’s so as to∑

s,t B
s,t
((0,0),(M−m,N−n)) = Z9X.

for s = 0 to m− 1, t = 0 to n− 1:

Bs,t = P−sM (zs,t9X)Q−tN .

- Construct integral matrix M ≡ [Ms,t]m×n with
Ms,t ∈ RM×N being its block element.

1. M0,0 = B0,0,

2. for s = 1 to m− 1: Ms,0 = Ms−1,0 +Bs,0.

3. for t = 1 to n− 1: M0,t = M0,t−1 +B0,t.

4. for s = 1 to m− 1, t = 1 to n− 1:
Ms,t = Ms−1,t +Ms,t−1 −Ms−1,t−1 +Bs,t.

- Calculate correlation Zs,t9X.

for s = 0 to m− 1, t = 0 to n− 1:
/* Divide Zs,t9X into four parts and calculate each of

them one by one by means of M.

1. L = Mm−1,n−1−Mm−1,n−t−1−Mm−s−1,n−1+
Mm−s−1,n−t−1.
If s = 0 or t = 0, L = 0M×N .

2. G = Mm−1,n−t−1 −Mm−s−1,n−t−1.
If s = 0, G = 0M×N .

3. K = Mm−s−1,n−1 −Mm−s−1,n−t−1.
If t = 0, K = 0M×N .

4. J = Mm−s−1,n−t−1.
/* Align the results of four sub-correlations:

5. L← Pm−s
M LQn−t

N ,

6. G← Pm−s
M GQ−tN ,

7. K← P−sM KQn−t
N ,

8. J← P−sM JQ−tN .
/* Sum the aligned four sub-correlations:

9. Zs,t9X = (L+G+K+ J)((0,0),(M−m,N−n)).

other parts in Pytorch. The experiments are performed on a
single NVIDIA TITAN X GPU.

Regularization parameter λ = 0.01. Gaussian response y
is identical to that in KCF with variance 0.01.
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Figure 1: Comparison among nBEKCF-D and state-of-the-
art trackers on VOT2018 challenge in terms of EAO.

Tracker nBEKCF-D HCF ECO CCOT MDNet SiamFC CFNet GOTURN

SR0.50 (%) 44.8 29.7 30.9 32.8 30.3 35.3 40.4 37.5

SR0.75 (%) 12.5 8.8 11.1 10.7 9.9 9.8 14.4 12.4

AO (%) 42.0 31.5 31.6 32.5 29.9 34.8 37.4 34.7

Table 1: Comparison among nBEKCF-D and state-of-the-art
trackers on the GOT10k test set in terms of average overlap
(AO) and success rates (SR) at overlap thresholds 0.5 and
0.75. The best three results are shown in red, green and blue,
respectively.

Tracker nBEKCF-D UPDT ECO SiamFC CFNet MDNet

Prec. (%) 56.3 55.7 49.2 53.3 53.3 56.5

Norm.Prec. (%) 70.8 70.2 61.8 66.6 65.4 70.5

Success (AUC) (%) 61.6 61.1 55.4 57.1 57.8 60.6

Table 2: Comparison among nBEKCF-D and state-of-the-art
trackers on the TrackingNet test set in terms of precision,
normalized precision, and success. The best three results are
shown in red, green and blue, respectively.

2.2. Evaluation on VOT, GOT10k, and TrackingNet

VOT2018 [8]. We evaluate our nBEKCF-D on Visual Ob-
ject Tracking (VOT) 2018 challenge which consists of 60
sequences. On the VOT2018 experiment, we compare
nBEKCF-D against the latest CF tracker fdKCF* [13] along
with the top-20 trackers on VOT2018 challenge. Following
the VOT challenge protocol, all trackers are evaluated by
expected average overlap (EAO). Fig. 1 shows the result. It
is seen from the figure that our nBEKCF-D achieves EAO
0.381, outperforming most state-of-the-art CF trackers, C-
COT [4], ECO [3], CFCF [5], UPDT [2], and fdKCF*. In
fact, the main reason that SiamRPN outperforms nBEKCF-
D is that the former trains a deep network to regress the
bounding boxes of targets finely on largest datasets, while
the latter only employs a scale-pyramid scheme.



GOT10k [7]. We evaluate nBEKCF-D on the test set of
GOT10k which is a large-scale tracking benchmark and
contains 180 test videos. On the GOT10k experiment, we
compare nBEKCF-D against seven state-of-the-art track-
ers, MDNet [11], HCF [9], ECO, CCOT, GOTURN [6],
SiamFC [1], and CFNet [12], in which there is no similar
step to SiamRPN to learn to regress the bounding boxes
finely. Note that UPDT and fdKCF* are not publicly tested
on GOT10k. Following the GOT10k challenge protocol, we
evaluate all trackers by average overlap, and success rates
at overlap thresholds 0.5 and 0.75. The results are shown
in Table 1. It is seen from the table that nBEKCF-D outper-
forms other trackers with large margins, except for CFNet
in terms of SR0.75. In fact, CFNet learns its features in an
end-to-end way on large datasets, whereas nBEKCF-D only
applies off-the-shelf features.

TrackingNet [10]. We evaluate our nBEKCF-D on the test
set of TrackingNet which is a large-scale tracking benchmark
and provides 511 test videos in the wild to assess trackers.
On the TrackingNet experiment, we compare nBEKCF-D
against five state-of-the-art trackers, MDNet, ECO, SiamFC,
CFNet, and UPDT. Identically, there is no similar step to that
in SiamRPN to learn to regress the bounding boxes finely in
all these trackers. Note that fdKCF* is not publicly tested
on TrackingNet. The results are shown in Table 2. It is seen
from the table that nBEKCF-D outperforms other trackers,
except for MDNet on the precision. It is known that MDNet
needs to be trained on large datasets, whereas our nBEKCF
need not.

It is interesting to notice from Table 2 that our nBEKCF-D
still outperforms UPDT, even if it only applies ResNet50 and
data augmentation, and does not employ other improvements
that UPDT adopted to develop SRDCF.

3. Notation

Let 〈, 〉 be the dot product, 〈H1,H2〉 =
〈vec(H1), vec(H2)〉, where vec(H) indicates the vec-
torization of the matrix H, H((a1,b1),(a2,b2)) be the
sub-matrix of matrix H with (a1, b1) and (a2, b2) as its top
left and down right corners, respectively, Ha,b or H(a, b)
be an element of matrix H, and [•] is a matrix with •
as its element. F9S = [〈F,S((a1,b1),(a2,b2))〉],1 where
((a1, b1), (a2, b2)) ∈ N2 and N2 is a domain of spatial
location. The matrix with a pair of superscripts is still a
matrix.

1In fact, in this paper and its supplementary material,9 is exactly the
same as the correlation without padding in convolutional neural networks.

4. Illustration of Algorithm 2 (CCIM)
Suppose

Z ≡ Z0,0 =

 1 2 3

4 5 6

7 8 9


and

X =


a b c d e

f g h i j

k l m n o

p q r s t

u w x y z

 ,
where the numbers in Z indicate its elements, rather than
the elements’ real values. zs,t ∈ RD and xs,t ∈ RD are
element of Z and X, respectively. Z and X are called base
patch and learning region, respectively.

Let 5× 5 fundamental calculation matrices

As,t = zs,t9X

and 5× 5 fundamental matrices

Bs,t = P−s5 As,tQ−t5 = P−s5 (zs,t9X)Q−t5 ,

where P5 and Q5 are defined in the paper with m = n = 5,
s = 0, 1, 2, and t = 0, 1, 2. As,t’s and Bs,t’s are shown
in Fig.2.2 Intuitively, Bs,t is generated through cyclically
shifting As,t.

In the rest of this section, we will explain how CCIM
works exactly with Z9X (i.e., Z0,09X) and Z1,19X.

4.1. Correlation of Z and X

It is seen that (Z9X)(0,0) = 〈Z,X((0,0),(2,2))〉. Accord-
ing to the construction of As,t’s and Bs,t’s,

〈zs,t,xs,t〉 = Bs,t
0,0,

where s = 0, 1, 2 and t = 0, 1, 2, Bs,t
0,0 is the element of Bs,t

at the top left corner (0, 0). 〈zs,t,xs,t〉’s are marked by the
blue blocks in Fig.2(b). Therefore,

(Z9X)(0,0) =

2∑
s=0

2∑
t=0

〈zs,t,xs,t〉 =
2∑

s=0

2∑
t=0

Bs,t
0,0.

Generally,

(Z9X)(u,v) = 〈Z,X((u,v),(u+2,v+2))〉,

where u = 0, 1, 2 and v = 0, 1, 2. Because

〈zs,t,xu+s,v+t〉 = Bs,t
u,v,

2All the numbers of equations and figures refer to the equations and
figures of this supplementary material.



(a) (b) (c)

Figure 2: (a) Fundamental calculation matrices As,t’s. (b) Fundamental matrices, Bs,t’s, with sub-matrices marked by red
bounding boxes. These sub-matrices are used while calculating Z9X. See Sec.4.1 for details. (c) Fundamental matrices,
Bs,t’s, with sub-matrices marked by red bounding boxes. These sub-matrices are used while calculating Z1,19X. See Sec.4.2
for details.

(Z9X)(u,v) =

2∑
s=0

2∑
t=0

〈zs,t,xu+s,v+t〉 =
2∑

s=0

2∑
t=0

Bs,t
u,v.

Consequently,

Z9X =

(
2∑

s=0

2∑
t=0

Bs,t

)
((0,0),(2,2))

.



(a) (b)

Figure 3: (a) Based on the position of z0,0 = 1, Z1,1 is
divided into four parts, L1,1 = (9), G1,1 = (7, 8), K1,1 =
(3; 6), and J1,1 = ((1, 2); (4, 5)). (b) The division of a
general cyclic base Zs,t into four parts, Ls,t, Gs,t, Ks,t, and
Js,t by means of the position of z0,0.

4.2. Correlation of Z1,1 and X

Z1,1, as shown in Fig.3(a), is generated by means of
Eq.(1) defined in Sec. 5 with m = n = 5 and s = t = 1. It
can be divided into four parts, L1,1, G1,1, K1,1, and J1,1.
Then, we have

Z1,19X = (L1,19X)((0,0),(2,2)) + (G1,19X)((0,1),(2,3))

+ (K1,19X)((1,0),(3,2)) + (J1,19X)((1,1),(3,3)).

Suppose the 0th and 4th rows are adjacent, and the
0th and 4th columns are adjacent too in Bs,t’s. Then,
(L1,19X)((0,0),(2,2)) equals to the sub-matrix of B2,2

marked by a red bounding box in B2,2 of Fig.2(c). Cyclical-
ly shifting the marked sub-matrix so as to make the element
marked by the pink block in B2,2 of Fig.2(c) be at the top
left corner, and letting L be the resulting matrix, we have

(L1,19X)((0,0),(2,2)) = L((0,0),(2,2)).

Similarly, (G1,19X)((0,1),(2,3)) equals to the summation
of two sub-matrices of B2,0 and B2,1 marked by two red
bounding boxes in B2,0 and B2,1 of Fig.2(c), respectively.
Cyclically shifting B2,0+B2,1 so as to make the summation
of two elements marked by the green blocks in B2,0 and
B2,1 of Fig.2(c) be at the top left corner, and letting G be
the resulting matrix, we have

(G1,19X)((0,1),(2,3)) = G((0,0),(2,2)).

(K1,19X)((1,0),(3,2)) equals to the summation of two
sub-matrices of B0,2 and B1,2 marked by two red bounding
boxes in B0,2 and B1,2 of Fig.2(c), respectively. Cyclically
shifting B0,2 + B1,2 so as to make the summation of two
elements marked by the yellow blocks in B0,2 and B1,2

of Fig.2(c) be at the top left corner, and letting K be the
resulting matrix, we have

(K1,19X)((1,0),(3,2)) = K((0,0),(2,2)).

Finally, (J1,19X)((1,1),(3,3)) equals to the summation of
four sub-matrices of B0,0, B0,1, B1,0, and B1,1 marked by
four red bounding boxes in B0,0, B0,1, B1,0, and B1,1 of
Fig.2(c), respectively. Cyclically shifting B0,0 + B0,1 +
B1,0 +B1,1 so as to make the summation of four elements
marked by the blue blocks in B0,0, B0,1, B1,0, and B1,1

of Fig.2(c) be at the top left corner, and letting J be the
resulting matrix, we have

(J1,19X)((1,1),(3,3)) = J((0,0),(2,2)).

Consequently, let C1,1 =
∑

D∈{L,G,K,J}D. Then,

Z1,19X = C1,1
((0,0),(2,2)).

It is easy to see that Zs,t9X’s can also be obtained with
similar procedures, where s ∈ {0, 1, 2}, t ∈ {0, 1, 2}.

4.3. Design Integral Matrix to Accelerate Correla-
tion

Given Z, according to the construction of Bs,t, where
s = 0, 1, 2 and t = 0, 1, 2, zs,t is the common factor of all
elements of the Bs,t. Replacing xs,t by Bs,t in Z, we have
the block matrix

T =

 B0,0 B0,1 B0,2

B1,0 B1,1 B1,2

B2,0 B2,1 B2,2

 .
We call Bs,t a T’s element in the rest of this section.

According to the examples in Secs.4.1 and 4.2, it is nec-
essary to calculate

∑2
s=0

∑2
t=0 B

s,t for obtaining Z9X,
and to calculate B2,2, B2,0 + B2,1, B0,2 + B1,2, and
B0,0 + B0,1 + B1,0 + B1,1 for obtaining Z1,19X. In or-
der to eliminate repeated additions, the three summations
of matrices, which are necessary to calculate both Z9X
and Z1,19X, should be shared. Notice that each above
summation of Bs,t’s is involved with the summation of T’s
elements. Constructing the block integral matrix M, we
have

M =

 M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2


with Mi,j =

∑
06s6i,06t6j B

s,t as its block elements.3

Then,

M2,2 =

2∑
s=0

2∑
t=0

Bs,t,

M2,2 −M1,2 −M2,1 +M1,1 = B2,2,

M2,1 −M1,1 = B2,0 +B2,1,

M1,2 −M1,1 = B0,2 +B1,2,

M1,1 = B0,0 +B0,1 +B1,0 +B1,1,

3In the paper, we denote a block element of M with Mi,j .



It is seen that the five summations can be achieved within a
constant duration by means of M. This way, the repeated
additions of Bs,t’s are eliminated.

In general, because Ds,t is a sub-matrix of Z, where
Ds,t ∈ {Ls,t,Gs,t,Ks,t,Js,t}, the Bi,j’s with the elements
of Ds,t as their common factors also constitute a T’s ele-
ments. While calculating Ds,t

L of Eq. (2) which is defined in
Sec. 5, similar to the examples in Secs.4.1 and 4.2, it is nec-
essary to calculate the summation of the T’s elements. For
a given Z, while (s, t) traverses all possible pairs, i.e., Zs,t

traverses all possible cyclic base patches, the brute-force cal-
culation of the summations will arise a great deal of repeated
summations, reducing the efficiency of correlations greatly
especially when the size of base patches is large. There-
fore, it is a natural choice to construct the integral matrix,
as described in CCIM, to obtain such summations without
repeated additions.

5. Correctness of Algorithm 2 (CCIM)
Suppose Z ∈ Rm×n×D is the base patch with zs,t ∈

RD’s as its elements, cyclic base patches Zs,t’s are generated
by using

Zs,t(d) = Ps
mZ(d)Qt

n, (1)

where d = 0, . . . , D − 1, s = 0, . . . ,m − 1, and t =
0, . . . , n − 1, Z(d) is the d-th channel of Z, Pl1 , l1 ∈
{m,M}, and Ql2 , l2 ∈ {n,N}, are the permutation ma-
trices of l1 × l1 and l2 × l2, respectively.4 X ∈ RM×N×D

is the learning region with xp,q ∈ RD’s as its elements.
Let M ×N fundamental calculation matrix

As,t = zs,t9X,

where s = 0, . . . ,m − 1, t = 0, . . . , n − 1, and M × N
fundamental matrix

Bs,t = P−sM As,tQ−tN = P−s5 (zs,t9X)Q−t5 .

Bs,t’s are generated through cyclic-shifts of As,t’s. Then,
zs,t only appears in As,t and Bs,t as a common factor of
their elements. The sets of whole As,t’s and Bs,t’s are
denoted as A and B, respectively.

In general, as shown in Fig.3(b), given s and t, Zs,t can
always be divided into four parts, Ls,t, Gs,t, Ks,t, and Js,t

by the position of z0,0. The sizes of Ls,t ≡ [ls,ti,j ], G
s,t ≡

[gs,t
i,j ], K

s,t ≡ [ks,t
i,j ], and Js,t ≡ [js,ti,j ] are s× t, s× (n− t),

(m−s)×t, and (m−s)×(n−t), respectively, and their top
left elements are ls,t0,0 = zm−s,n−t, g

s,t
0,0 = zm−s,0, ks,t

0,0 =

z0,n−t, and js,t0,0 = z0,0, respectively. Note that Ls,t and
Gs,t or Ls,t and Ks,t will not exist if s = 0 or t = 0.
Zs,t9X can then be divided into four parts, i.e.,

Zs,t9X = Ds,t
L +Ds,t

G +Ds,t
K +Ds,t

J , (2)

4The detailed explanation of Eq. (1) can be found in the paper.

where

Ds,t
L = (Ls,t9X)((0,0),(M−m,N−n)),

Ds,t
G = (Gs,t9X)((0,t),(M−m,N−n+t)),

Ds,t
K = (Ks,t9X)((s,0),(M−m+s,N−n)),

Ds,t
J = (Js,t9X)((s,t),(M−m+s,N−n+t)),

Ds,t
L = [Ds,t

L (u, v)], Ds,t
G = [Ds,t

G (u, v)], Ds,t
K =

[Ds,t
K (u, v)], Ds,t

J = [Ds,t
J (u, v)], u = 0, . . . ,M −m and

v = 0, . . . , N − n.

5.1. Calculation of Ds,t
L (u, v)

It is clear that

Ds,t
L (u, v) =

s−1∑
i=0

t−1∑
j=0

〈ls,ti,j ,xu+i,v+j〉

and ls,ti,j = zm−s+i,n−t+j which only appears in
Bm−s+i,n−t+j . We have

〈ls,ti,j ,xu+i,v+j〉 = Am−s+i,n−t+j
u+i,v+j

and

Bm−s+i,n−t+j = P
−(m−s+i)
M Am−s+i,n−t+jQ

−(n−t+j)
N

= P
−(m−s)
M P−iMAm−s+i,n−t+jQ−jN Q

−(n−t)
N .

Let A(L) = P−iMAm−s+i,n−t+jQ−jN . Then,

A(L)
u,v = Am−s+i,n−t+j

u+i,v+j .

That is,
〈ls,ti,j ,xu+i,v+j〉 = A(L)

u,v .

∵ Bm−s+i,n−t+j = P
−(m−s)
M A(L)Q

−(n−t)
N ,

∴ 〈ls,ti,j ,xu+i,v+j〉 = Bm−s+i,n−t+j
(u−(m−s))modM,(v−(n−t))modN .

Therefore,

Ds,t
L (u, v) =

s−1∑
i=0

t−1∑
j=0

Bm−s+i,n−t+j
(u−(m−s))modM,(v−(n−t))modN .

(3)
It is seen that the subscripts of every item are irrelative to
(i, j) in the right hand side of Eq. (3). That is, all of the
items possess the same subscripts, although they belong to
different fundamental matrices.

It is seen from Fig.3(b) that the top left and bottom right
elements of Ls,t are zm−s,n−t and zm−1,n−1, respective-
ly. Let SL,s,t =

∑m−1
i=m−s

∑n−1
j=n−t B

i,j . According to the



construction of integral matrix M, SL,s,t can be calculated
within a constant time as

SL,s,t = Mm−1,n−1 −Mm−1,n−t−1

−Mm−s−1,n−1 +Mm−s−1,n−t−1.

Then, we have

Ds,t
L (u, v) = SL,s,t

(u−(m−s))modM,(v−(n−t))modN .

5.2. Calculation of Ds,t
G (u, v)

It is clear that

Ds,t
G (u, v) =

s−1∑
i=0

n−t−1∑
j=0

〈gs,t
i,j ,xu+i,v+t+j〉

and gs,t
i,j = zm−s+i,j which only appears in Bm−s+i,j . We

have
〈gs,t

i,j ,xu+i,v+t+j〉 = Am−s+i,j
u+i,v+t+j

and

Bm−s+i,j = P
−(m−s+i)
M Am−s+i,jQ−jN

= P
−(m−s)
M P−iMAm−s+i,jQ−jN .

Let A(G) = P−iMAm−s+i,jQ−jN . Then,

A
(G)
u,v+t = Am−s+i,j

u+i,v+t+j .

That is,
〈gs,t

i,j ,xu+i,v+t+j〉 = A
(G)
u,v+t.

∵ Bm−s+i,j = P
−(m−s)
M A(G),

∴ 〈gs,t
i,j ,xu+i,v+t+j〉 = Bm−s+i,j

(u−(m−s))modM,v+t.

Therefore,

Ds,t
G (u, v) =

s−1∑
i=0

n−t−1∑
j=0

Bm−s+i,j
(u−(m−s))modM,v+t. (4)

It is seen that the subscripts of every item are irrelative to
(i, j) in the right hand side of Eq. (4). That is, all of the
items possess the same subscripts, although they belong to
different fundamental matrices.

It is seen from Fig.3(b) that the top left and bottom right
elements of Gs,t are zm−s,0 and zm−1,n−t−1, respectively.
Let SG,s,t =

∑m−1
i=m−s

∑n−t−1
j=0 Bi,j . According to the con-

struction of integral matrix, SG,s,t can be calculated within
a constant time as

SG,s,t = Mm−1,n−t−1 −Mm−s−1,n−t−1.

Then, we have

Ds,t
G (u, v) = SG,s,t

(u−(m−s))modM,v+t.

5.3. Calculation of Ds,t
K (u, v)

It is clear that

Ds,t
K (u, v) =

m−s−1∑
i=0

t−1∑
j=0

〈ks,t
i,j ,xu+s+i,v+j〉

and ks,t
i,j = zi,n−t+j which only appears in Bi,n−t+j . We

have
〈ks,t

i,j ,xu+s+i,v+j〉 = Ai,n−t+j
u+s+i,v+j

and

Bi,n−t+j = P−iMAi,n−t+jQ
−(n−t+j)
N

= P−iMAi,n−t+jQ−jN Q
−(n−t)
N .

Let A(K) = P−iMAi,n−t+jQ−jN . Then,

A
(K)
u+s,v = Ai,n−t+j

u+s+i,v+j ,

That is,
〈ks,t

i,j ,xu+s+i,v+j〉 = A
(K)
u+s,v.

∵ Bi,n−t+j = A(K)Q
−(n−t)
N ,

∴ 〈ks,t
i,j ,xu+s+i,v+j〉 = Bi,n−t+j

u+s,(v−(n−t))modN .

Therefore,

Ds,t
K (u, v) =

m−s−1∑
i=0

t−1∑
j=0

Bi,n−t+j
u+s,(v−(n−t))modN . (5)

It is seen that the subscripts of every item are irrelative to
(i, j) in the right hand side of Eq. (5). That is, all of the
items possess the same subscripts, although they belong to
different fundamental matrices.

It is seen from Fig.3(b) that the top left and bottom right
elements of Ks,t are z0,n−t and zm−s−1,n−1, respectively.
Let SK,s,t =

∑m−s−1
i=0

∑n−1
j=n−t B

i,j . According to the
construction of integral matrix, SK,s,t can be calculated
within a constant time as

SK,s,t = Mm−s−1,n−1 −Mm−s−1,n−t−1.

Then ,we have

Ds,t
K (u, v) = SK,s,t

u+s,(v−(n−t))modN .

5.4. Calculation of Ds,t
J (u, v)

It is clear that

Ds,t
J (u, v) =

m−s−1∑
i=0

n−t−1∑
j=0

〈js,ti,j ,xu+s+i,v+t+j〉



and js,ti,j = zi,j which only appears in Bi,j . We have

〈js,ti,j ,xu+s+i,v+t+j〉 = Ai,j
u+s+i,v+t+j

and
Bi,j = P−iMAi,jQ−jN .

Then, Bi,j
u+s,v+t = Ai,j

u+s+i,v+t+j . Therefore

〈js,ti,j ,xu+s+i,v+t+j〉 = Bi,j
u+s,v+t

and

Ds,t
J (u, v) =

m−s−1∑
i=0

n−t−1∑
j=0

Bi,j
u+s,v+t. (6)

It is seen that the subscripts of every item are irrelative to
(i, j) in the right hand side of Eq. (6). That is, all of the
items possess the same subscripts, although they belong to
different fundamental matrices.

It is seen from Fig.3(b) that the top left and bottom right
elements of Js,t are z0,0 and zm−s−1,n−t−1, respectively.
Let SJ,s,t =

∑m−s−1
i=0

∑n−t−1
j=0 Bi,j . According to the con-

struction of integral matrix, SJ,s,t can be calculated within
constant time as

SJ,s,t = Mm−s−1,n−t−1.

Then, we have

Ds,t
J (u, v) = SJ,s,t

u+s,v+t.

5.5. Correlation of Zs,t and X

According to the proofs in Secs.5.1, 5.2, 5.3, and 5.4, we
have got Ds,t

L , Ds,t
G , Ds,t

K , and Ds,t
J . Set

rL(u, v) = (u− (m− s))modM − u,
cL(u, v) = (v − (n− t))modN − v,
rG(u, v) = (u− (m− s))modM − u,
cG(u, v) = t,

rK(u, v) = s,

cK(u, v) = (v − (n− t))modN − v,
rJ(u, v) = s,

cJ(u, v) = t,

(7)

and

Ss,t
L = P

−rL(u,v)
M SL,s,tQ

−cL(u,v)
N ,

Ss,t
G = P

−rG(u,v)
M SG,s,tQ

−cG(u,v)
N ,

Ss,t
K = P

−rK(u,v)
M SK,s,tQ

−cK(u,v)
N ,

Ss,t
J = P

−rJ (u,v)
M SJ,s,tQ

−cJ (u,v)
N .

Then, Ds,t
L (u, v), Ds,t

G (u, v), Ds,t
K (u, v), and Ds,t

J (u, v) are
shifted to Ss,t

L (u, v), Ss,t
G (u, v), Ss,t

K (u, v), and Ss,t
J (u, v),

respectively.
Now we prove P

−rL(u,v)
M = P

−rL(0,0)
M .

∵ 0 ≤ s 6 m − 1, ∴ −m 6 −(m − s) 6 −1 6 0. ∵
M > m, ∴ 0 6 M − m ≤ M − (m − s) 6 M − 1. ∴

P
−rL(0,0)
M = P

−(M−(m−s))
M .

Now we split the set {0, . . . ,M − m} into two parts,
Sl = {0, . . . ,m− s− 1} and St = {m− s, . . . ,M −m}.

If u ∈ Sl, then 0 6 u 6 m−s−1. ∴−M 6 −(m−s) 6
u − (m − s) 6 −1. In this case, rL(u, v) = (u − (m −
s))modM − u =M + u− (m− s)− u =M − (m− s).

If u ∈ St, then m− s 6 u 6M −m. ∴ 0 6 u− (m−
s) 6 M − m − (m − s) < M . In this case, rL(u, v) =
(u− (m− s))modM − u = u− (m− s)− u = −(m− s).

∵ P
−(M−(m−s))
M = Pm−s

M , ∴ P
−rL(u,v)
M =

P
−(M−(m−s))
M , ∴ P

−rL(u,v)
M = P

−rL(0,0)
M .

Similarly, we can prove

P
−rG(u,v)
M = P

−rG(0,0)
M ,

Q
−cL(u,v)
N = Q

−cL(0,0)
N , and

Q
−cK(u,v)
N = Q

−cK(0,0)
N .

Consequently, given (s, t), the right hands of all equations
in Eq.(7) are constant and not related to (u, v). All elements
of SL,s,t are shifted by the same number of rows and the
same number of columns, respectively. So do SG,s,t, SK,s,t,
and SJ,s,t. Ds,t

L (0, 0), Ds,t
G (0, 0), Ds,t

K (0, 0), and Ds,t
J (0, 0)

are shifted to Ss,t
L (0, 0), Ss,t

G (0, 0), Ss,t
K (0, 0), and Ss,t

J (0, 0),
respectively. Specifically,

(Ss,t
L )((0,0),(M−m−1,N−n−1)) =

SL,s,t
((M−m+s,N−n+t),((M−2m+s)modM,(N−2n+t)modN)),

(Ss,t
G )((0,0),(M−m−1,N−n−1)) =

SG,s,t
((M−m+s,t),((M−2m+s)modM,N−n+t)),

(Ss,t
K )((0,0),(M−m−1,N−n−1)) =

SK,s,t
((s,N−n+t),(M−m+s,(N−2n+t)modN)),

(Ss,t
J )((0,0),(M−m−1,N−n−1)) =

SJ,s,t
((s,t),(M−m+s,N−n+t)).

That is, Ds,t
L , Ds,t

G , Ds,t
K , and Ds,t

J are aligned. Let

Cs,t = Ss,t
L + Ss,t

G + Ss,t
K + Ss,t

J .

According to Eq.(2),

Zs,t9X = Cs,t
((0,0),(M−m−1,N−n−1)).

Q.E.D.
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