
Supplementary Material for Splatty- A Unified Image Demosaicing and Rectification

Method

Pranav Verma, Dominique E. Meyer, Hanyang Xu, Falko Kuester
University of California San Diego

{pverma, dom, hax032, fkuester}@ucsd.edu

1 Appendix A: Dataflow

We present a high-level hardware dataflow implementation that highlights the efficiency of the proposed method. The Bayered input
streamed gets mapped using an efficient LUT Decoder block to a set of output buffers given the decay function. As this implementation
architecture prioritizes memory savings, the stream can be fully pipelined and demonstrates ideal dataflow. Future work can extend this
forward-mapping approach to both ASIC and FPGA design to fully optimize the efficiency in hardware systems.

2 Appendix B: Reasoning for Rectification performance comparison

We used the algorithm described by [1] to get estimate the uncompressed LUT from camera parameters and image features. This same
algorithm has been used by OpenCv’s rectification function to generate their own Lookup Tables. Therefore, the reconstruction errors
that we computed between our compressed and uncompressed lookup tables also correspond to the errors between our compressed LUT
based rectification function and OpenCV’s rectification function.

2.1 Demosaicing + Rectification pipeline Complete set of outputs

2.2 Rectification of various types of distortions

For the second quantitative comparison of rectification method that we described, we considered lens distortions (radial, tangential, radial
and tangential) as well as projective distortions. We consider a high density checkerboard as the ground truth image (Figure 3). We then
apply the above mentioned distortions, by using OpenCV’s initUndistortRectifyMap to generate the distortion maps, using the following
distortion coefficients:

• Radial Distortion Coefficients: [0.152962472, -0.488448363, 0.479883735]

• Tangential Distortion Coefficients: [-0.002962353, -0.000317416]

For projective distortion, we use a projective transformation matrix that has the following elements:

H =

 cos(−π/12) sin(−π/12) 3.91325630e+ 01
sin(π/12) cos(−π/12) −4.03624934e+ 02

0 0 2/3


And transforming the pixels using this.

Using these distortion parameters, we create the distortion Look Up Tables (LUTs), and create distorted inputs using OpenCV’s remap
function. (Figure 4)

Then we invert these LUTs and feed those to our algorithm and to [1] for undistortion of these distorted images. (Figure 5). We then
run a corner detector on these undistorted images, and on the ground truth image, and find the matches (based on corner points with
least distance), and compute the distance between corresponding points)

3 Appendix C: Explanation of memory usage for Debayering and Rectification al-
gorithms

For the rectification step, we consider three rectification implementations. First, we consider the backward mapping approach, which
uses 2 M × N LUTs to store the rectification maps, and image buffers of size M × N each for the input and output images. Then we
consider the approach of Oh and Kim ([4]), which decomposes the two M × N LUTs to three 1D LUTs of size M,N and C1 (where C1
was empirically determined to be 1024 for a 640 × 480 image, and we estimate it to be atleast 2048 for a 1920 × 1080 image), but need
M ×N space for the output image. Finally, we consider Junger et al.’s approach ([5]), for general rectification on FPGAs, which stores
LUT of size M ×N , and buffers 1 row of output, and 50 rows of input image.

For the debayering step, we consider all the algorithms in Table 1. For single pass algorithms like bilinear interpolation, or Malvar et
al [2], and double pass algorithms like Smooth Hue based demosaicing [6], we only need to store K ×K interpolation filters, and buffer K
rows of the input image, and 1 row for each output channel (K=3 for bilinear, K=5 for others). Similarly, because these algorithms use

1



Figure 1: Dataflow

2



(a) Left Camera (b) Left Camera (c) Left Camera

(d) Right Camera (e) Right Camera (f) Right Camera

(g) [2] + [3] (h) Our algorithm (i) [2] + [3] (j) Our algorithm

Figure 2: (a),(d) Raw, unrectified image pair from stereo camera, (b),(e) Debayered, then Stereo Rectified Image Pair using [2], and [3]
(c),(f) Debayered + Stereo Rectified Output from our algorithm, (g)-(j) Close ups from our method and [2] + [3]

Figure 3: Ground truth image

3



(a) Radial Distorted Image (b) Tangentially distorted im-
age

(c) Radial + Tangentially dis-
torted image

(d) Projective Distorted Im-
age

Figure 4: Distorted Images, which are fed to rectification pipelines

Model Parameters Intermediate Feature Maps Total Memory usage (KB)
SRCNN 24416 4 * MN 34540.095
VDSR 668227 6 * MN 53254.98172
Gharbi 559776 5 * MN 44731.345
EDSR 1500000 2406 * MN 19496504.09
DRRN 297216 390* MN 3162205.72
Unet 1734795 109* MN 891721.263

DPN(lite) 4416128 614* MN 4992695.22
DMCNN-VD 668227 6* MN 53254.98172

local gradient information, Hamilton’s algorithm ([7]), can get by with only K = 5 rows per channel in input and output, and another
K rows for intermediate gradient computation. Similarly, Li and Orchard’s method [8], we only need to buffer K = 8 rows for input
and 1 per channel for output, and K intermediate rows. For the rest of the algorithms, buffering isn’t a viable option, and therefore
Gunturk’s algorithm ([9]) requires 7.75 ∗M ×N of additional memory to store the intermediate outputs, and Kimmel’s algorithm ([10])
needs 7 ∗M × N additional memory. For the ML based algorithms, we estimate their memory usage by considering the total number
of parameters in the model, and the input, output and any intermediate feature maps that would be needed in an optimized FPGA
implementation (for eg. feature maps needed for skip connections). All the parameters and intermediate maps are stored as float32, so
total memory usage will be (number of parameters + intermediate feature maps) * 4bytes

Finally, for our algorithm, we can compute the memory consumption as follows: from Figure ??, we see that 6th order polynomial is
sufficient. Therefore, our lookup tables will have size min(M,N) ∗ (order + 1) ∗ 2 (one for x, one for y). For processing, we use a single
row buffer for the input, and a max 50 rows for each channel in the output.

4 Append C: PSNR values of various Demosaicing algorithms on selected images
from Kodak Dataset

Table 1: Debayering performance of various algorithms, on selected images from Kodak Dataset, measured by PSNR in decibels, the
effective number of passes to produce the output, and the order of memory consumed. PSNR scores for all algorithms except ours, and
Malvar et al, have been taken from [11], Table 3

Image \Algo Bilinear Cnst. hue Malvar et al Li Kimmel Hamilton Gunturk Proposed
6 28.956 31.396 32.627 33.499 34.418 36.324 39.951 33.180
7 34.454 36.779 37.726 37.111 38.620 41.773 42.713 37.108
8 24.551 27.350 28.895 29.588 31.858 33.409 36.452 31.717
9 33.611 36.120 37.129 37.515 39.659 41.430 43.237 36.499
11 30.191 32.400 34.301 33.372 35.344 37.353 40.409 34.148
16 32.341 34.719 35.441 37.451 37.788 39.713 42.913 34.926
19 29.186 31.716 33.149 34.708 36.172 38.419 42.913 34.263
20 32.565 34.931 35.152 35.601 38.181 39.462 42.030 36.307
21 29.557 31.960 33.407 32.549 35.202 36.542 40.220 34.161
22 31.433 33.718 34.578 33.802 35.995 37.746 39.217 34.664
23 36.256 38.082 38.704 38.132 31.883 42.868 43.186 38.950
24 27.564 29.938 30.933 29.333 32.196 33.381 36.630 33.644

Average (12 images) 30.889 33.259 34.337 34.388 35.610 38.202 40.823 34.937
Num Passes 1 2 1 2 2 2 2 1

Memory O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(min(m,n))

4



(a) Radial Corrected Image - Ours (b) Radial Corrected Image - [1]

(c) Tangentially corrected image - Ours (d) Tangentially corrected image - [1]

(e) Radial + Tangentially corrected image - Ours (f) Radial + Tangentially corrected image - [1]

(g) Projective Corrected Image - Ours (h) Projective Corrected Image - [1]

Figure 5: (a)(c)(e)(g) Corrected Images,from our pipeline and (b)(d)(f)(h) from [1]

5



5 Appendix D: Kodak Dataset Outputs from our algorithm and Malvar He Cutler’s
Algorithm [2]

We present a comparison of our algorithm’s output with the output from Malvar et al.’s [2] algorithm, along with the original color images
from Kodak Dataset [12]. We compare against Malvar et al.’s algorithm because it has the highest reconstruction accuracy among existing
single pass algorithms, and the lowest memory footprint (as shown in the main paper). It is also the most frequently used debayering
algorithm (part of the open-source image processing library, OpenCV).

From this, it is clear that our algorithm produces just as good results as the other algorithm, at a fraction of the memory usage (see
the main paper for details).

(a) Original (b) Ours (c) Malvar et al.

Figure 6: Kodak Image 1

(a) Original (b) Ours (c) Malvar et al.

Figure 7: Kodak Image 2

(a) Original (b) Ours (c) Malvar et al.

Figure 8: Kodak Image 3

References

[1] Richard I Hartley. Theory and practice of projective rectification. International Journal of Computer Vision, 35(2):115–127, 1999.

[2] H. S. Malvar, Li-wei He, and R. Cutler. High-quality linear interpolation for demosaicing of bayer-patterned color images. In 2004
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 3, pages iii–485, May 2004.

6



(a) Original (b) Ours (c) Malvar et al.

Figure 9: Kodak Image 4

(a) Original (b) Ours (c) Malvar et al.

Figure 10: Kodak Image 5

(a) Original (b) Ours (c) Malvar et al.

Figure 11: Kodak Image 6

(a) Original (b) Ours (c) Malvar et al.

Figure 12: Kodak Image 7

7



(a) Original (b) Ours (c) Malvar et al.

Figure 13: Kodak Image 8

(a) Original (b) Ours (c) Malvar et al.

Figure 14: Kodak Image 9

(a) Original (b) Ours (c) Malvar et al.

Figure 15: Kodak Image 10

(a) Original (b) Ours (c) Malvar et al.

Figure 16: Kodak Image 11

8



(a) Original (b) Ours (c) Malvar et al.

Figure 17: Kodak Image 12

(a) Original (b) Ours (c) Malvar et al.

Figure 18: Kodak Image 13

(a) Original (b) Ours (c) Malvar et al.

Figure 19: Kodak Image 14

(a) Original (b) Ours (c) Malvar et al.

Figure 20: Kodak Image 15

9



(a) Original (b) Ours (c) Malvar et al.

Figure 21: Kodak Image 16

(a) Original (b) Ours (c) Malvar et al.

Figure 22: Kodak Image 17

(a) Original (b) Ours (c) Malvar et al.

Figure 23: Kodak Image 18

(a) Original (b) Ours (c) Malvar et al.

Figure 24: Kodak Image 19

10



(a) Original (b) Ours (c) Malvar et al.

Figure 25: Kodak Image 20

(a) Original (b) Ours (c) Malvar et al.

Figure 26: Kodak Image 21

(a) Original (b) Ours (c) Malvar et al.

Figure 27: Kodak Image 22

(a) Original (b) Ours (c) Malvar et al.

Figure 28: Kodak Image 23

11



(a) Original (b) Ours (c) Malvar et al.

Figure 29: Kodak Image 24

(a) (b) (c)

(d) (e) (f)

Figure 30: Debayering output on few images from Kodak dataset with (a)-(c) Algorithm proposed by Malvar et al [2]; (d)-(f) our algorithm

12



[3] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence,
22(11):1330–1334, 2000.

[4] Sungchan Oh and Gyeonghwan Kim. An architecture for on-the-fly correction of radial distortion using fpga. Proceedings of SPIE -
The International Society for Optical Engineering, 03 2008.

[5] Christina Junger, Albrecht HeA, Maik Rosenberger, and Gunther Notni. FPGA-based lens undistortion and image rectification for
stereo vision applications. In Maik Rosenberger, Paul-Gerald Dittrich, and Bernhard Zagar, editors, Photonics and Education in
Measurement Science 2019, volume 11144, pages 284 – 291. International Society for Optics and Photonics, SPIE, 2019.

[6] David R. Cok. Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image
signal.

[7] James E. Adams Jr. John F. Hamilton Jr. Adaptive color plane interpolation in single sensor color electronic camera.

[8] Xin Li and M. T. Orchard. New edge-directed interpolation. IEEE Transactions on Image Processing, 10(10):1521–1527, Oct 2001.

[9] Bahadir K Gunturk, Yucel Altunbasak, and Russell M Mersereau. Color plane interpolation using alternating projections. IEEE
transactions on image processing, 11(9):997–1013, 2002.

[10] Ron Kimmel. Demosaicing: image reconstruction from color ccd samples. IEEE Transactions on image processing, 8(9):1221–1228,
1999.

[11] Olivier Losson, Ludovic Macaire, and Yanqin Yang. Comparison of color demosaicing methods. Advances in Imaging and Electron
Physics - ADV IMAG ELECTRON PHYS, 162:173–265, 07 2010.

[12] Eastman Kodak Company. Kodak LossLess True Color Image Suite, 1999(accessed 23 June 2020).

13


