
Supplementary Material:
Supervoxel Attention Graphs for Long-Range Video Modeling

Yang Wang1, Gedas Bertasius2, Tae-Hyun Oh3, Abhinav Gupta2, Minh Hoai1, Lorenzo Torresani2
1Stony Brook University, 2Facebook AI, 3POSTECH

{wang33,minhhoai}@cs.stonybrook.edu,taehyun@postech.ac.kr,{gedas,gabhinav,torresani}@fb.com

1. Experimental Evaluation on Something2-V2

While our main submission includes a comprehen-
sive evaluation on Charades and Something2-V1, here we
present results obtained on a third dataset, Something2-
V2 [5]. The Something2-V1 and V2 datasets have the same
174 fine-grained action categories, such as “Putting some-
thing on a surface”, “Putting something into something”
etc. The V2 dataset has a total number of 220,847 videos,
which is more than twice as many videos as V1. For this
evaluation, we leverage as backbone the same R101 net-
work utilized in TSM [8]. We refer the reader to Sec. 5.2
of this Supplementary Material for further information on
the experimental setup and the implementation details. The
results are reported in Table 1. Compared to the TSM base-
line, our proposed Supervoxel Attention Graph (SVAG) ap-
plied to the supervoxel similarity graph Gsim, improves the
top-1 accuracy by 1% (from 62.9% to 63.9%).

We point out that SVAG provides consistent gains over
the baselines across all datasets (Charades, Something2-V1,
and Something2-V2) and all backbones (R50, R101, and ip-
CSN152) considered in our experiments.

2. Experimental Evaluation on Kinetics-400

We also perform experiments on Kinetics-400 [1], an-
other standard benchmark for action recognition in videos.
It contains about 260K videos of 400 different human ac-
tion categories. We use the training split (240K videos)
for training and the validation split (20K videos) for eval-
uation. For this evaluation, we leverage as backbone the
same ip-CSN152 network utilized in CSN [10]. We refer
the readers to Sec. 5.3 of this Supplementary Material for
further information on the experimental setup and the im-
plementation details. The results are reported in Table 2.
Compared to the CSN baseline, our proposed Supervoxel
Attention Graph (SVAG) applied to the supervoxel similar-
ity graph Gsim, improves the top-1 accuracy by 0.5% (from
80.3% to 80.8%).

3. Comparison to Spatiotemporal Graphs

Wang and Gupta [11] suggested another type of hand-
designed graph, called spatiotemporal graph, in addition to
the similarity graph. While their graphs leverage region pro-
posals as nodes, here we discuss how we can construct spa-
tiotemporal graphs on our supervoxels. We then present an
empirical evaluation demonstrating that our learnable simi-
larity graph on supervoxels is superior to the spatiotemporal
graph on supervoxels and that the former effectively already
encodes the information represented in the latter.

Spatiotemporal Graphs. In order to adapt the spatiotem-
poral graph of Wang and Gupta [11] to operate on super-
voxels, we need to define the notion of spatial and temporal
proximity among supervoxels, which have irregular shapes.
We achieve this goal by measuring the amount of contact
between two adjacent supervoxels along the different di-
mensions (spatial and temporal).

For the temporal graph, we build two graphs: a forward
graph Gfront and a backward graph Gback. Given super-
voxels i and j, we set edge Gfront

i←j by counting the number
of pixels of j that become part of supervoxel i when we
move forward by one frame (i.e., such that pixel (x, y, t)
belongs to j but (x, y, t + 1) belongs to i). As in [11],
we normalize the edge weight so that the sum of the edge
values connected to supervoxel i will be 1. Edge Gback

i←j is
computed similarly but moving backward by one frame.

For the spatial graph Gspatial, we compute the adja-
cency between supervoxels along the two spatial axes in a
similar way to the the temporal graph. In this case Gspatial

i←j

is set by counting how many pixels (x, y, t) of j become
part of i when moving by 1 along either the x-axis (i.e., to
(x+1, y, t) or (x−1, y, t)) or the y axis (i.e., to (x, y+1, t)
or (x, y − 1, t)). Again, we normalize this count so that the
sum of the edge values connected to supervoxel i will be 1.

Spatiotemporal Graph Convolution. We de-
fine the complete spatiotemporal graph as Gs−t =
(Gspatial,Gfront,Gback). As in [11], due to the usage of
multi-graphs in Gs−t, we extend the definition the graph

Method Backbone Pretrain # Frame
× Crop

Top-1 val. Top-5 val. Top-1 test Top-5 test

TSM [8] R101 Kinetics-400 16× 1 62.9 88.1 – –
SVAG (Ours) R101 Kinetics-400 16× 1 63.9 88.6 62.4 88.3

Table 1: Comparison between TSM [8] and SVAG on Something2-V2. We use the same backbone (R101) and the same
pretraining scheme. SVAG provides a gain of 1% in top-1 accuracy over TSM.

Method Backbone Pretrain # Frame
× Crop

Top-1 val. Top-5 val.

CSN [10] ip-CSN152 IG-65M 32× 10 80.3† 94.6
SVAG (Ours) ip-CSN152 IG-65M 32× 10 80.8 94.7

Table 2: Comparison between CSN [10] and SVAG on Kinetics-400. We use the same backbone (ip-CSN152) and the
same pretraining scheme. SVAG provides a gain of 0.5% in top-1 accuracy over CSN. † indicates the performance of our
own implementation with 10-crop testing (80.8%) while the original paper [10] used 30-crop testing (82.5%). Our conclusion
holds due to consistent relative improvement.

convolutional layer with multiple graphs (Gi) as:

GConv[(Gi),Z] :=
∑

iLN[G
ifi(Z)Wr,i], (1)

Comparing Gsim and Gs−t. Table 3 provides a compari-
son of our SVAG model applied to Gsim only, Gs−t only,
or a combination of the two. The training and testing are
done on the Charades and Something2 datasets.

First, from the results on the Charades dataset, it can be
seen that SVAG applied to Gsim provides superior accuracy
compared to when applied to Gs−t (44.1 vs 42.8 in mAP).
Second, applying SVAG to the combined Gsim+Gs−t does
not yield further improvement over using Gsim only. A
similar trend is also hold in the results on the Something2

dataset. This suggests that the learned similarity in Gsim al-
ready captures most of the spatiotemporal information en-
coded in Gs−t.

4. Visualization of Supervoxel Attentions
In Fig. 1 we provide more video examples that visualize

the supervoxel attentions. We observe the highly attended
supervoxels are the most relevant to the actions performed
in the video. This demonstrates our model spontaneously
learns to attend to human-centric supervoxels and objects
likely being interacted even without any spatial annotation.

5. Implementation Details
5.1. Experiments on Charades

Backbone Model (R101-NL). We use the “R101-NL”
model provided by [12] as our backbone model to extract
video features on Charades dataset [9]. Following Wu et al.,

the R101-NL model is constructed as follows. The back-
bone model is based on the 2D ResNet-101 [6] architec-
ture with non-local operations [11]. The model was first
pre-trained on the ImageNet dataset [3], and subsequently
inflated into a 3D CNN using the I3D technique [2], i.e., in-
flating 2D k×k kernels into 3D t×k×k kernels by copying
the 2D kernel weights t times and rescaling by 1/t. After
inflation, the 3D CNN was trained on Kinetics-400 [2] and
then finetuned on the target dataset, i.e., Charades. We re-
move the last classification layer and use the fully convolu-
tional part of the network for feature extraction. The back-
bone model “R101-NL” takes as input a sequence of RGB
frames of shape T×H×W×3, and outputs feature maps of
shape T

2×
H
16×

W
16×2048.

Input Preprocessing. Since videos have different aspect
ratios and sizes, we process them to have the same spa-
tiotemporal dimensions. We follow the same procedure
used in [12]. Given an input video, we first reduce its tem-
poral resolution to 6 frames per second. We then spatially
resize the videos such that the shorter side has 256 pix-
els while the aspect ratio is kept the same, and crop them
with a spatial window of size 256×256 at each corner and
center location. For instance, given an input video clip of
10 seconds, the input to the backbone model is of shape
60×256×256×3, and the output feature maps V is of shape
30×16×16×2048.

Hyper-Parameters. For optimization on Charades, we use
SGD (with momentum set to 0.9) and a weight decay of
1.25× 10−5. The learning rate starts with 0.02 and decays
with a rate of 0.1 at the 10-th epoch. The training stops after
15 epochs. The training batch size is set to 16.

Dataset Charades Something2-V2

Model Backbone Pretrain mAP Backbone Pretrain Top-1 val.
SVAG w/ Gs−t

R101-NL Kinetics-400 42.8 R101 Kinetics-400 63.6
SVAG w/ Gsim R101-NL Kinetics-400 44.1 R101 Kinetics-400 63.9
SVAG w/ Gsim + Gs−t R101-NL Kinetics-400 44.1 R101 Kinetics-400 63.7

Table 3: Comparison between SVAG applied to the similarity graph Gsim vs. the spatiotemporal graph Gs−t on
Charades (left) and Something2-V2 (right). SVAG applied to Gsim yields consistently better results than when used on
Gs−t. Furthermore, SVAG applied to a combination of Gsim and Gs−t does not improve over inference on Gsim only. This
suggests that the learnable similarity encoded in Gsim already captures most of the information contained in Gs−t. We report
mAP and top-1 validation accuracy for Charades and Something2-V2, respectively.

For supervoxel computation, we use the following pa-
rameters:

(λRGB , λsemantic, λT , λXY) =
(
5, 2, Kt

0.1T
,max(Kh

0.1H
, Kw
0.1W

)
)
,

(2)
where Kw,Kt, and Kh are the number of supervoxels
along the (x, y, t)-axes, respectively, RGB and segmenta-
tion channels are in range [0, 1]. We refer the readers to [7]
for more information on the setting of these hyperparame-
ters.

5.2. Experiments on Something2 (V1 and V2)

Backbone Model (TSM). TSM [8] stands for Temporal
Shift Module. It uses a 2D ResNet-101 to extract video
features, and shifts part of the features along the temporal
dimension to achieve temporal modeling at zero computa-
tion and zero parameters. TSM takes as input a sequence
of RGB frames of shape T×H×W×3, and outputs feature
maps of shape T×H

16×
W
16×2048.

Input Preprocessing for TSM. To prepare the input RGB
frames for the TSM model, we evenly sample 16 frames
from each video and spatially resize them such that the
shorter side has 256 pixels while the aspect ratio is kept
the same. We then crop them with a spatial window of size
256×256 at the center location. The input video to the TSM
model has shape 16 × 256 × 256 × 3, and the final repre-
sentation is of size 16× 16× 16× 2048.

Backbone Model (CSN). CSN [10] refers to the Channel-
Separated Convolutional Network. Compared to standard
3D CNNs, CSN achieves better accuracy and lower com-
putational cost by factorizing 3D convolutions via sepa-
rating channel interactions and spatiotemporal interactions.
We refer the readers to [10] for mode details. Specifi-
cally, we use “ip-CSN152” as our backbone model to ex-
tract video features. The model was first pre-trained on the
IG-65M [4] dataset and then finetuned on the target dataset,
i.e., Something2-V1. The ip-CSN152 model takes as input

a sequence of RGB frames of shape T×H×W×3, and out-
puts feature maps of shape T

8×
H
32×

W
32×2048.

Input Preprocessing for CSN. To process the Something2

videos as input to the CSN model, we first change their tem-
poral resolution to 15 frames per second, and spatially re-
size them such that the shorter side has 256 pixels while the
aspect ratio is kept the same. We then crop the videos with a
spatial window of size 256×256 at the center location. Af-
ter these steps, we evenly sample five time-locations from
each video. At each of the five locations, we take a 32-frame
sequence and feed it to the CSN backbone. The output fea-
ture maps at each location is of shape 4 × 8 × 8 × 2048,
which is subsequently average-pooled along the temporal
dimension to have shape 1×8×8×2048. Finally, we tem-
porally concatenate the feature maps from all five locations
as the final feature representation for each video, which is
of shape 5× 8× 8× 2048.

Hyper-Parameters The Something2 dataset has two ver-
sions, i.e., V1 and V2. The hyper-parameters here are the
same as for the Charades experiments, except that the learn-
ing rate starts with 0.001 and decays at the end of epoch 4.
The training stops after 6 epochs for V1. For V2, the learn-
ing rate decays at the end of epoch 2, and the training stops
after 4 epochs. The training takes fewer epochs on V2 be-
cause V2 includes roughly twice the amount of training data
compared to V1. The training batch size is set to 64 for both
V1 and V2.

5.3. Experiments on Kinetics-400

For Kinetics-400, we also leverage as backbone the ip-
CSN152 network proposed in [10]. The implementation
details and the hyper-parameter setup of the experiments on
Kinetics-400 are the same with those of the experiments on
Something2 V2.

Figure 1: Visualization of the attention learned by our proposed Supervoxel Attention Graph (SVAG).

References
[1] J. Carreira and A. Zisserman. Quo vadis, action recog-

nition? a new model and the kinetics dataset. In Proc.
CVPR, 2017.

[2] J. Carreira and A. Zisserman. Quo vadis, action recog-
nition? a new model and the kinetics dataset. In Proc.
CVPR, 2017.

[3] J. Deng, W. Dong, R. Socher, K. L. L.-J. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Proc. CVPR, 2009.

[4] D. Ghadiyaram, D. Tran, and D. Mahajan. Large-
scale weakly-supervised pre-training for video action
recognition. In Proc. CVPR, 2019.

[5] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska,
S. Westphal, H. Kim, V. Haenel, I. Fruend, P. Yianilos,
M. Mueller-Freitag, et al. The” something something”
video database for learning and evaluating visual com-
mon sense. In Proc. ICCV, 2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proc. CVPR, 2016.

[7] V. Jampani, D. Sun, M.-Y. Liu, M.-H. Yang, and
J. Kautz. Superpixel sampling networks. In Proc.
ECCV, 2018.

[8] J. Lin, C. Gan, and S. Han. Tsm: Temporal shift mod-
ule for efficient video understanding. In Proc. ICCV,
2019.

[9] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi,
I. Laptev, and A. Gupta. Hollywood in homes: Crowd-
sourcing data collection for activity understanding. In
Proc. ECCV, 2016.

[10] D. Tran, H. Wang, L. Torresani, and M. Feiszli.
Video classification with channel-separated convolu-
tional networks. In Proc. ICCV, 2019.

[11] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local
neural networks. In Proc. CVPR, 2018.

[12] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He,
P. Krähenbühl, and R. Girshick. Long-term feature
banks for detailed video understanding. In Proc.
CVPR, 2019.

