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1. Algorithm Details
1.1. Network architectures

We provide the architectural details of our mask en-
hancement network, guidance learner, spatiotemporal fea-
ture transfer, and grid learner in Table 1. As shown in
Figure 1, we extract the VGG-19 features from four scales
(CONV1 1, CONV2 1, CONV3 1, and CONV4 1) and match
the multi-resolution feature statistics via three splatting
blocks [9]. Note we remove the global scene summary path
in Xia et al. [9] as we aim to transfer style between lo-
cal regions, where the global features will not help. In each
splatting block, the weights of the first and the last convo-
lutional layers are shared for the content and style feature
paths. The output of each ST-AdaIN layer is propagated to
the next frame for blending the temporal information. After
the feature transferring, we apply two convolutional layers
to predict the bilateral grids.

1.2. Soft grid mask

In Algorithm 1, we provide the detailed steps to compute
the soft grid mask for blending the foreground and back-
ground grids.

1.3. Implementation details

We implement our model in Tensorflow [1]. For train-
ing, we use the training set from DAVIS 2017 [8] which
contains 60 videos and each video has 70 frames in average.
We optimize the model using Adam [3] with hyperparam-
eters α = 10−4, β1 = 0.9, β2 = 0.999, ε = 10−8, and a
batch size of 2 video clips. At each iteration, we take five
consecutive frames as a clip and randomly crop the original
frames into a resolution of 256 × 256. To train the mask
enhancement network, we generate noisy input masks by
applying erosion and dilation with random kernel sizes to
the ground-truth object masks. Since mask enhancement

Algorithm 1: Compute Soft Grid Mask
Input: Learned guide map z, pixel mask Mpxl,

image size (w, h), grid size (W,H,D)
Output: Soft grid mask Mgrid

1 Initialize grid mask: Mgrid = zeros(W,H,D);
2 zD = floor((z ·Mpxl)×D) ;
3 sw, sh = w/W, h/H ;
4 for x← 1 to W and y ← 1 to H do
5 patch = zD[x× sw : (x+ 1)× sw, h× sh :

(y + 1)× yh] ;
6 Mgrid[x, y, :]← sum(patch > 0);
7 for d← 1 to D do
8 if d in patch then
9 Mgrid[w, h, d]← sum(patch == d);

10 end
11 end
12 end
13 Normalize grid mask: Mgrid ←Mgrid/(sw × sh);

is a largely orthogonal task, we first pre-train this module
for 20000 iterations and freeze the weights. We then train
the remainder of the network end-to-end for 90000 itera-
tions. By limiting the “full-res” input to also be 256× 256,
we can significantly reduce training time, which takes about
two days on a single NVIDIA Tesla V100 GPU with 16 GB
RAM. At inference time, the trained model can be applied
to arbitrary input resolution, because of the usage of bilat-
eral grid.

2. Grid Sub-sampling
The proposed method can be further sped up by sub-

sampling the bilateral grids in the temporal domain. As
the nearby frames typically have similar color, the bilat-
eral grids can also be shared to render the stylized result.
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type conv conv conv conv conv conv conv conv conv conv conv conv conv conv conv conv conv conv
stride 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1

kernel size 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1
spatial size 256 256 256 256 256 128 128 128 64 64 64 32 32 32 16 16 16 16
channels 16 8 1 16 1 8 8 8 16 16 16 32 32 32 64 64 64 96
activation - - sigmoid - sigmoid relu relu relu relu relu relu relu relu relu relu relu relu -

Table 1: Detailed configuration of each module.
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Figure 1: Detailed architecture of our spatiotemporal feature transfer and grid prediction layers.

Specifically, we can generate the bilateral grid for every r
frames and estimate the intermediate grids by a linear inter-
polation, as shown in Figure 2(a). In Figure 2(c) and (d), we
show that our method can still render high-quality results up
to a sub-sampling rate of r = 8. For r = 16, the estimated
grid may have a larger spatial mismatch with the content,
resulting in undesired visual artifacts. Such a temporal sub-
sampling strategy is suitable for the proposed method and
Xia et al. [9]. Other approaches, e.g., WCT2 [10], is not
able to generate reasonable results by simply interpolating
the output frames, as shown in Figure 2(b).

By utilizing such a grid sub-sampling strategy, we can
reduce the computational cost and speed up the process-
ing time during inference. As shown in Table 2, our model
with sub-sampling rate r = 8 is about 8× faster at four dif-
ferent image resolutions. The video comparisons are pro-
vided in the supplementary videos grid sampling.mp4 in
the video mp4 folder.

Image Size 512 × 512 1024 × 1024 2000 × 2000 3000 × 4000

Lai et al. [4] 0.0024s 0.0031s 0.0073s OOM

LST* [5] 0.2753s 0.8365s OOM OOM
PhotoWCT* [6] 0.6366s 1.5185s OOM OOM
WCT2* [10] 3.8599s 6.1375s OOM OOM
Xia et al.* [9] 0.0058s 0.0068s 0.0117s OOM
Ours (r = 1) 0.0378s 0.0380s 0.0414s 0.0464s
Ours (r = 8) 0.0048s 0.0049s 0.0052s 0.0058s

Table 2: Execution time. An asterisk denotes that the tech-
nique of Lai et al. [4] was applied to improving temporal
stability. OOM indicates out of memory.

3. More Qualitative Comparisons

3.1. Effect of TC-AdaIN

Figure 3 shows a visual comparison, where the results
without the TC-AdaIN have a visible color shift. We can see



(a) Grid Sampling and Interpolation.

(b)                                     (c)  Ours                     (d)  Details                     

Figure 2: Our method can be sped up by subsampling the
bilateral grids in the temporal space while achieving similar
visual quality.

Inputs w/o TC-AdaIN Final results

Figure 3: Effect of TC-AdaIN. Without propagating inter-
mediate features with TC-AdaIN, the stylized outputs have
a significant color shifting within 8 frames in this example.

the stylized outputs have a significant color shifting without
propagating intermediate features with TC-AdaIN.

3.2. Mask refinement

While our grid-space blending can handle imperfect in-
put masks, visible artifacts may remain if the masks are too
noisy, as shown in Figure 4(b) and (e). Our mask enhance-
ment network significantly improves mask boundaries (Fig-
ure 4(c)), and our rendered result (Figure 4(f)) is visually
comparable to a rendering using the ground truth mask (Fig-
ure 4(g)).

3.3. Anti-distortion module

Recent photorealistic style transfer methods [6, 5, 10] are
based on encoder-decoder architecture, which often cause
spatial distortions or unrealistic visual artifacts when recon-
structing an image from the low-resolution deep features.
Therefore, extra smoothing steps or modules are required
to minimize those spatial distortions. PhotoWCT [6] opti-
mizes a matting affinity to ensures spatially consistent styl-
ization. Similarly, LST [5] applies a spatial propagation net-
work (SPN) [7] on the reconstructed images to smooth the
results. On other other hand, WCT2 [10] replaced max-
pooling layers with wavelet pooling where the high fre-
quency components are skipped to the decoder directly so
that all edges and corners are preserved.

Here, we show visual comparisons to existing meth-
ods with and without applying their anti-distortion mod-
ules. Figure 5 shows the comparison with PhotoWCT. Al-
though the smoothing step helps reduce local artifacts, the
smoothed result becomes blurry and hazy. In contrast, our
result preserves all the edges and image structures well.
In Figure 6, the result of LST without applying SPN has
severe spatial distortions. The SPN recovers some image
details but cannot suppress all the distortions, resulting in
an unrealistic result. Figure 7 shows the results of WCT2

with and without the skip connections for high-frequency
components. It is clear that the skip connections helps
bring back the image details and preserve the photoreal-
ism, showing comparable results to the proposed method.
More video comparisons are provided in the supplementary
videos visual comparison.mp4 in the video mp4 folder.

3.4. High-resolution style transfer

Although the proposed method is efficient when process-
ing high-resolution (e.g., 2000 × 2000) videos, extracting
the object segmentation masks could be computationally
expensive. For example, it takes 2.61 seconds for a segmen-
tation model, DeepLab [2], to process a single 1920× 1080
frame. Therefore, we aim to understand the feasibility
of applying low-resolution segmentation masks for high-
resolution style transfer. First, we compute the object masks
from a low-resolution (256× 256) input frame, which takes
only 0.47 seconds for DeepLab. Then, we resize the masks
to 1920 × 1080 through nearest neighbor interpolation for
transferring styles. We compare the proposed method with
WCT2 in Figure 8. The results from WCT2 have clear
visual artifacts on the object boundaries as the upscaled
masks are noisy. On the other hand, our method is able
to generate high-quality results, which are comparable to
the ones produced by using the ground-truth object masks.
We demonstrates that our model performs well on high-
resolution videos even if the segmentation masks is ex-
tracted from a low-resolution space. Please refer to the sup-
plementary videos HD video w upscaled mask ∗ .mp4
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Figure 4: Effect of mask enhancement. When the input object mask is too noisy, the stylized results may still contain visible
artifacts on the boundaries. Mask enhancement lets us render high-quality boundaries visually comparable to the result using
the ground truth mask.
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Figure 5: Visual comparison with PhotoWCT [6].

in the video mp4 folder for video comparisons.

4. Failure Cases

Our method requires reliable image-space statistics and
can cope with modest amounts of segmentation noise.
However, it may fail when the selected areas are too small
(e.g., a textureless region with a single color). On the other

hand, when the foreground objects cannot be detected prop-
erly due to occlusion or reflection, our method may not be
able to separate the styles of foreground and background
very well, as shown in Figure 9.
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Figure 6: Visual comparison with LST [5].
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Figure 7: Visual comparison with WCT2.
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Figure 8: High-resolution video stylization using low-resolution masks.
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Figure 9: Failure cases.
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