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1. More on Slice-and-fuse
Figure 1 illustrates the proposed slicing operation. The

lower row demonstrates a set of XY slices generated from
the input density volume. Compared to projecting the whole
volume at one time, the proposed slice operation alleviates
the heavy occlusion from the background clutter objects and
can potentially expose the target object directly to the de-
tectors. For example, there is a target gun exposed in the
middle image of the lower row.

Figure 1. Illustration of slice-operation along z-axis.

2. Retinal-SliceNet implementation details
Fig 2 shows the architecture of Retinal-SliceNet. The

only component that needs to be trained is RetinaNet which
is applied to each individual 2D slice. The RetinaNet has
two key ingredients, that we briefly summarize. First, it
uses the feature pyramid network [1] as backbone to extract
features from the input image and construct a feature pyra-
mid. For each pyramid level, they attach two FCNs to it -
a classification subnet that predicts the confidence score of
each object class, and a box regression subnet that regresses
the bounding box locations. Second, given that the number
of pixels occupied by the target is usually a small fraction
of the entire slice, there is often a severe class imbalance.

Figure 2. Retinal-SliceNet architecture.

To address this, a focal loss is adopted at training which
under-penalizes small errors in the predicted score while
over-penalizing larger errors; the net effect is that a large
portion of the training data that is easily classified does not
significantly affect the model thereby providing robustness
to class imbalance.

The training of Retinal-SliceNet involves only the train-
ing of [2]. We use all 118,790 positive slices as well as
11,879 negative slices randomly selected from all negative
training samples. For negative slices, we set a target bound-
ing box to the upper left pixel and all other positions as
background clutter. One Nvidia TITAN Xp GPU is used
during training. The input images are of size 560 × 560.
The model is trained with a mini-batch size of 8 images for
200 epochs. We use a pretrained FPN [1] as backbone net-
work. We adopt SGD for optimization with a learning rate
of 0.0001, a weight decay of 0.0001 and momentum of 0.9.
For the focal loss function, we use γ = 2 and α = 0.25.

After obtaining the bounding boxes locations and scores
for each slice, we generate a prediction slice, whose pixels
in the bounding boxes are filled with corresponding scores
and background pixels with value 0. All predicted slices are
fed to the fusion stage to generate a 3D prediction. We fur-
ther threshold the 3D prediction to keep only regions with
high possibility to be target objects and give a bounding box
to each connected regions.

3. U-SliceNet implementation details

As is shown in Figure 3, U-SliceNet has three key com-
ponents — voxel-wise labeling network, region proposal,



Figure 3. U-SliceNet architecture.

and proposal classification. We will describe the training
and implementation details of each component in this sec-
tion.

Voxel-wise labeling network. Given a volumetric input,
the voxel-labeling network generates a 3D prediction us-
ing slice-and-fuse strategy. The only component we need to
train is a 2D UNet that is applied to each slice. The 2D UNet
has the following architecture. It has eight fully convolu-
tional layers conv1-conv8, followed by eight deconvo-
lution layers deconv1-deconv8, with a skip connection
connecting each pair of them. In the downsampling path-
way, each convi (i=1,...,8) layer outputs a feature map
with a spatial resolution of 2i lower than the input image
and 32 ∗ 2i feature channels. Each conv layer is followed
by a LeakyReLU (α = 0.2) activation and a batch nor-
malization. The bottleneck feature has a spatial resolution
of 1 × 1 with 8192 channels. In the upsampling pathway,
each deconvi (i=8,...,1) layer outputs a feature map with
a spatial resolution of 2(i−1) lower than the output image,
and the final has the same number of channels as the num-
ber of object classes. Each deconvi (i=8,...,2) layer is
followed by an ReLU activation and a batch normalization
layer.

During the training of 2D-UNet [3], each input image is
resized to 256 × 256. We use all 118,790 positive slices as
well as 11,879 negative slices randomly selected from all
negative training samples. We use one GPU with a mini-
batch of 16 images. We adopt Adam optimizer with β1 =
0.5 and β2 = 0.999 and train the network for 200 epochs.
The initial learning rate is 0.002 and is updated every 50
epochs according to lambda update rule. We adopt focal
loss as training criterion, with γ = 5 and α = 0.5.

Region proposal. After obtaining the voxel-wise predic-
tion, we use a threshold r1 to filter out regions that have
small probabilities to be target objects. Among the kept re-
gions, we select anchor points using a spatial interval of 15
voxels, and propose a fixed set of 155 anchors at each loca-
tion.

Proposal classification. We train two small 3D classifica-
tion networks on the region proposals generated from train-
ing baggage — one for gun class and one for sharp class.
Each network has three convolutional blocks followed by
two fully connected layers. Each convolutional block is
composed of four 3D convolution layers, each followed by
an ReLU activation. conv1 of each block outputs a fea-
ture map with spatial resolution 2i lower than the input 3D
feature map and 64 × 2i number of feature channels. And
conv2-4 of each block keep the spatial resolution and
number of channels the same.

When training gun classifier, we use all training bags
with guns in them, as well as 10% of clear bags and bags
containig knives. Similarly for training the sharp classifier.
During each training iteration, the network takes in a mini-
batch of 5 bags and randomly selects upto 5000 negative
proposals and positive proposals. The training labels are
determined according to the Intersection-over-Union (IoU)
ratios with the ground-truth bounding box as in [4]. The
proposals that have IoU greater than 0.4 are assigned as pos-
itive samples, and those have IoU less than 0.1 are assigned
as negative samples. Four GPUs are used in training. We
use an Adam optimizer with β1 = 0.9, β2 = 0.999, learning
rate of 0.0001 and momentum of 0.9 and train the network
for 500 epochs. A focal loss with α = 0.25 and γ = 2 is
used as training criterion.
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