
Conditional Link Prediction of Category-Implicit Keypoint Detection

Supplementary Materials

Ellen Yi-Ge1, Rui Fan2, Zechun Liu1, Zhiqiang Shen1
1 Carnegie Mellon University

2 UC San Diego

A. Deep Path Aggregation Detector
Multi-scale feature fusion aims to aggregate features at
different resolutions. Formally, given a multi-scale feature
Pli at layer li, we aim to design an appropriate approach
to effectively aggregate different features and update to a
deeper layer with renovated features. The conventional Fea-
ture Pyramid Networks (FPN) (Lin et al. 2017) aggregate
multi-scale features in a top-down manner, but it is inher-
ently limited by the one-way information flow. Thus, PANet
(Liu et al. 2018) provides an extra bottom-up path aggrega-
tion network. Figure 1(a) illustrates the additional path with
red arrows. The neurons in high layers strongly respond to
entire objects, while other neurons are more likely to be ac-
tivated by local texture and patterns. This manifests the ne-
cessity of augmenting a top-down path to propagate seman-
tically strong features and enhance all features with reason-
able classification capability. The coarser feature map Cli at
layer li and the generated feature maps Nli at layer li with
higher resolution can be calculated as:

Cli = Concat(U(Cli+1), g(Pli)), (1)

Nli = Concat(D(Nli−1), g(Cli)). (2)
where g represents the convolutional operations for feature
processing, U is usually an upsampling procedure and D is
usually a downsampling procedure for resolution alignment,
and Concat denotes the concatenate operation.

Inspired by PANet (Liu et al. 2018), we design a deep
path aggregation network, DPAD, to enhance the localiza-
tion capability of the entire feature hierarchy by propagat-
ing strong responses of low-level patterns, which is illus-
trated in Figure 1(b). ResNeXt (Xie et al. 2017) is utilized
as the backbone network to generate different levels of fea-
ture maps, namely {C3, C4, C5, C6, C7}. Table 1 demon-
strates the the superiority of ResNeXt-101 considering both
AP and FLOPs. In addition to these feature maps gener-
ated from FPN, two higher-level feature maps, C8 and C9,
are created by downsampling from C5. The augmented path
starts from the lowest level and gradually approaches to the
top. From C3 to C9, the spatial size is gradually down-
sampled with factor 2. {N3, N4, N5, N6, N7, N8, N9}
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: a) The architecture of the PANet. b) The architecture of
DPAD. Two higher-level feature maps, C8 and C9, are created by
down-sampling from C5. Thus, another two feature maps, N8 and
N9, are generated on the neck part. This design enhances the lo-
calization capability of the entire feature hierarchy by propagat-
ing strong responses of low-level patterns. Additionally, unlike the
backbone ResNet utilized in PANet, we use ResNeXt as the back-
bone in our DPAD.

Table 1: Detection performance (%) comparison of the ResNeXt
models with different layers.

Backbone AP AP50 AP75 APS APM APL FLOPs(G)
ResNeXt-50 40.6 59.3 37.2 17.8 41.6 56.4 4.6
ResNeXt-72 41.4 62.1 41.9 18.3 42.4 58.9 6.1
ResNeXt-101 42.7 64.7 45.8 20.1 45.1 64.3 7.3
ResNeXt-124 42.9 65.1 46.3 20.8 45.4 64.9 10.6
ResNeXt-152 43.3 65.3 46.5 21.3 45.9 65.3 12.1

denote newly generated feature maps corresponding to
{C3, C4, C5, C6, C7, C8, C9}. Each building block takes
a higher-resolution feature map Ni and a coarser map Ci+1

through lateral connection to generate a new feature map
Ni+1 as follows:

Cli = D(Cli−1)i∈(8,9), (3)

Nli = Concat(D(Nli−1), g(Cli))i∈(8,9), (4)

Unlike PANet (Liu et al. 2018), we remove the mask
branch and adopt CIoU (Zheng et al. 2020) to penalize the
union area over the circumscribed rectangle’s area in IoU
Loss. CIoU can achieve better convergence speed and accu-
racy for bounding box (BBox) regression problem.



Table 2: Detection performance (%) comparison among differ-
ent models. DPAD∗ has two more higher-level feature maps
C10, C11, and DPAD† has four more higher-level feature maps
C10, C11, C12, C13.

Backbone AP AP50 AP75 FLOPs(G) #Params

PANet 42.0 65.1 45.7 7.1 78M
DPAD∗ 43.0 64.9 46.3 7.8 94.5M
DPAD† 42.9 64.7 46.1 8.1 99.3M

NAS-FPN 43.1 65.3 46.5 12.1 166.5M
BiFPN 44.4 66.4 48.3 18.7 189.2M

DPAD 42.7 64.7 45.8 7.3 89.8M

Figure 2: The performance (%) trends of object detection module
and keypoint estimation module. In terms of the Keypoint Detec-
tion Module (KPM): 1:FPN-based CKLM; 2:PANet-based CKLM;
3.DPAD-based CKLM; 4.DPAD∗-based CKLM; 5. DPAD†-based
CKLM; 6.NAS-FPN-based CKLM; 7.BIFPN-based CKLM. In
terms of the Object Detection Module (OBM):1:FPN; 2:PANet;
3.DPAD; 4.DPAD∗; 5. DPAD†; 6.NAS-FPN; 7.BIFPN.

We have also tried a deeper DPAD and compared the per-
formance with other approaches. Table 2 shows the perfor-
mance of DPAD∗ and DPAD†, another two deeper DPADs.
Based on DPAD, the former has two more higher-level fea-
ture maps C10 and C11, and the other has four more higher-
level feature maps C10, C11, C12, and C13. From Table
2, we achieve an advance of 0.3% in AP for DPAD∗, but
the FLOPs increases by 0.5G. Even the module is designed
deeper, like in DPAD†, the AP will even decrease, which in-
dicates the precision of the module does not increase w.r.t.
the deeper feature layers. Another two approaches, NAS-
FPN (Ghiasi, Lin, and Le 2019) and BIFPN (Tan, Pang, and
Le 2020) can achieve higher precision, but the FLOPs and
the number of parameters are also huge. Thus, we discuss
what influences object detector on the top-down keypoint
detection in Figure 2.

As shown in Figure 2, the orange line is the trend of the
object detector performance; and the blue one illustrates the
performance of the top-down keypoint detection. When the
object detector’s precision is low, the top-down keypoint de-
tection performance will be more dependent on the objector
detector. However, when the object detector’s AP is larger
than 42.7%, the precision of the top-down keypoint detec-
tion becomes saturated; namely, the top-down keypoint de-
tection performance does not heavily rely on the object de-
tector. Thus, a trade-off between the precision and the cost

Table 3: Comparison of a 3-stage CKLM with different corse-to-
fine strategies on COCO minival dataset. For each strategy, the
number in the table represents the kernel size. The kernel size con-
trols the fineness of supervision and a smaller value indicates a finer
setting.

Setting 1 2 3 4 5 6 7

Stage 1 7 5 7 7 7 5 5
Stage 2 7 5 5 7 5 5 3
Stage 3 7 5 5 5 3 3 3
AP(%) 75.0 74.6 75.1 74.8 75.3 74.4 74.1

is the key to design an efficient top-down keypoint detector.
Based on this prospect, we adopt DPAD as the final object
detector in our system.

From the top row of Figure 4, it is obvious to figure out the
differences among the heatmaps with distinguishable sizes
of Gaussian kernels, 7, 5, and 3. The strategy is based on the
observation that the estimated heatmaps from multi-stages
are also in a similar coarse-to-fine manner. The bottom row
of Figure 4 shows an illustrative corresponding predictions
(yellow lines) and ground truth annotations (blue lines). The
pink circles on both left and center images display the pre-
diction errors, which demonstrates that the proposed strat-
egy is able to refine localization accuracy gradually.

B. Cross-Stage Keypoint Localization Module
(CKLM)

In the paper, we have discussed the performance of CKLM
w.r.t. different number of single stages. The final CKLM
module contains three stages to balance the precision and
the cost. After a single stage, the single heatmap contains
predefined the most probable keypoint locations. However,
the heatmap from the first single stage is a coarse prediction
with abounding noise, even adequate features have been ex-
tracted in the stage. To filter the noise, another two stages are
cascaded with a coarse-to-fine surveillance strategy to boost
the keypoint localization performance. Since the Gaussian
kernel is used to generate the ground truth heat map for each
key point, we decide to use distinguishable sizes of kernels,
7, 5, and 3, in these three stages. The distribution of the
heatmaps with distinguishable sizes of kernels are demon-
strated in Figure 3.

Table 3 demonstrates the performance of the 3-stage
CKLM with disparate Gaussian kernel sizes. We employ
distinctive settings for the 3-stage CKLM each time. As
shown in Table 3, setting 1 achieves an AP of 75.0%, whose
kernel sizes are 7 in all three stages. We tried to degrade the
kernel size to 5 in all three stages, however, the AP decreases
by 0.4%. It indicates that if we adopt the same kernel sizes,
the larger one can present a better performance. We con-
jecture that this is because the smaller region after the first
stage would negatively affect the performance of the detec-
tor. Thus, setting 3 and setting 4 are proposed to prove our
speculation. When the kernel size in the first stage increases
from 5 to 7 in setting 3, the AP is escalated by 0.5%; while
the kernel size of the second stage further increases to 7 in
the setting 4, the AP is depreciated 74.8 %, even better than



Figure 3: Performance of CKLM with different Gaussian Kernel size.

Figure 4: Illustration of a coarse-to-fine strategy. The top row
shows the ground-truth heatmaps of the distinctive single stages.
From left to right, the Gaussian kernel sizes (ks) of each stage are
7, 5, and 3. The bottom one illustrates the corresponding predic-
tion performance (yellow lines) and the ground-truth annotations
(blue lines). The radius of pink circles displays the prediction er-
rors, which are the L2 distances between the ground-truth keypoint
position and predicted location.

the performance in setting 2. It shows that the kernel size in
the second stage should be smaller than the one in the first
stage. Thus, we decide to diminish the kernel size in the third
stage to further validate our hypothesis. In setting 5, the ker-
nel sizes in three stages are set as 7, 5 and 3, respectively.
The performance in this setting accomplished the best, and
the AP is escalated to 75.3 %. Another two further settings,
setting 6 and setting 7, are also made to figure out the perfor-
mance trends with a smaller kernel size in the first stage. In

accordance with expectations, the AP is worse than the one
in setting 5. Finally, we adopt the best setting of the kernel
sizes: 7, 5 and 3 in our 3-stage CKLM.

Table 4 shows the architecture of the single stage of our
proposed CKLM. There exist two main branches, the down-
sampling path and the upsampling path, in each single stage.
Each path contains four corresponding layers: DS-1, DS-2,
DS-3 and DS-4 for the downsampling path and US-1, US-
2, US-3 and US-4 for the upsampling path. The downsam-
pling layer consists of several BottleNeck-4 and bottleneck-
3 blocks; while the upsampling layer encompasses sev-
eral UpUnit-4 and UpUnit-3 blocks. Each BottleNeck and
UpUnit block includes distinctive number of convolution
layers, batch normalization (Ioffe and Szegedy 2015), and
ReLU (Agarap 2018) activation functions.

C. Conditional Link Prediction Graph Module
(CLPGM)

In the paper, we construe the details of CLPGM, which in-
cludes the Location Instability Strategy (LIS). The LIS is
utilized to disentangle occlusion cases under the same cat-
egory. When multiple targets are occluded, the number of
detected nodes may be higher than the predefined number in
the overlapped area. If these targets are with the same label,
we should design a LIS to infer which nodes are for each
overlapped target. Since the details of LIS are already intro-
duced in the paper, we only demonstrate our approach with
more samples.

Tabel 5 illustrates the comparison among KLPNet,
KLPNet? and KLPNet† on ObjectNet3D+. From Table 5,
KLPNet† achieves the best performance on distinctive cat-
egories. Since our approach is the forerunner for link pre-
diction on multi-class rigid bodies, it is hard to compare it
with others either quantitatively or qualitatively. Here we vi-



Figure 5: Location Instability Strategy Performance. The left columns indicate the results of the DPAD; The column ”Positive” displays
the results of LPGM with LIS; The columns ”Negative-1” and ”Negative-2” illustrate the potential negative samples from the results of the
system without LIS.

sualize the conditional connection link to illustrate the qual-
itative performance. From Figure 5, our KLPNet† provides
correct connection links in various cases and the semantic
information well manifests themselves.

D. Loss Function
Recall the total loss Keypoint and Link Prediction Network
(KLPNet) is formulated as follows:

LKLPNet = αLkd + βLlink, (5)

where α and β are the predefined constant parameters.
Table 6 illustrates the performance of the whole module

with different settings of the loss. We tried nine settings for
the coefficient, α and β. If the proportion of α is large, the
precision of the KLPNet is low; while if it is tiny, the preci-
sion is not achievable either. Finally, the setting of α and β,
0.3 and 0.7, can achieve the best performance.

E. Other Applications
KLPNet can be utilized for keypoint detection on rigid bod-
ies. In this section, we discuss some other applications based
on our KLPNet.

Refined Object Detection
If CLPGM is removed from the KLPNet, the category-
implicit keypoints are localized in the images. Without
CLPGM, we cannot connect the keypoints correctly due to
semantic chaos. In this case, we hope to refine the bounding
box as a polygon area, which can encircle the target with a

Figure 6: Without CLPGM, the nodes are bounded to get the max-
imum semantic bounding area. It narrows the interested regions.

narrow yet more accurate area. The results are shown in Fig-
ure 6. However, we concede this approach is only an attempt
to refine the object detection. Some recent object detector
(Wei et al. 2020) can generate a more accurate and efficient
area to encircle the target in the image.



Table 4: The architecture of the single stage in CKLM.

DownSampling Path Type Number Type Number

DS-1 BottleNeck-4 3 BottleNeck-3 4
DS-2 BottleNeck-3 5 BottleNeck-4 3
DS-3 BottleNeck-4 2 BottleNeck-3 5
DS-4 BottleNeck-3 5 BottleNeck-4 3

UpSampling Path Type Number Type Number

US-1 UpUnit-4 3 UpUnit-3 4
US-2 UpUnit-3 5 UpUnit-4 3
US-3 UpUnit-4 2 UpUnit-3 5
US-4 UpUnit-3 5 UpUnit-4 3

Type Layer Kernel Stride Padding

Conv 1× 1 1× 1 –
BN + ReLU – – –

Conv 3× 3 1× 1 1× 1
BN + ReLU – – –

BottleNeck-4 Conv 3× 3 1× 1 1× 1
BN + ReLU – – –

Conv 1× 1 1× 1 –
BN + ReLU – – –

Conv 1× 1 1× 1 –
BN + ReLU – – –

BottleNeck-3 Conv 3× 3 1× 1 1× 1
BN + ReLU – – –

Conv 1× 1 1× 1 –
BN + ReLU – – –

Conv 1× 1 1× 1 –
BN + ReLU – – –

Conv 3× 3 1× 1 1× 1
BN + ReLU – – –

UpUnit-4 Conv 1× 1 1× 1 –
BN + ReLU – – –

Conv 3× 3 1× 1 1× 1
BN + ReLU – – –

Conv 1× 1 1× 1 –
BN + ReLU – – –

UpUnit-3 Conv 1× 1 1× 1 –
BN + ReLU – – –

Conv 3× 3 1× 1 1× 1
BN + ReLU – – –

Simultaneous Localization and Mapping (SLAM)
SLAM is a computational problem of constructing or updat-
ing the map of an unknown environment while simultane-
ously keeping track of an agent’s location within it. SLAM
(Durrant-Whyte and Bailey 2006) (Bailey and Durrant-
Whyte 2006) contains two subsystems: localization and
mapping. Localization is not only the first step but also the
key of success to figure out the decision of the whole system.
Current approaches (Mur-Artal, Montiel, and Tardos 2015)
(Cui and Ma 2019) (Gomez-Ojeda et al. 2019) of localiza-
tion concentrate to pair the landmarks on two frames. We
believe that KLPNet offers a new sight to localize the spe-
cial objects. In terms of SLAM, the details, such as texture,
color, are not essential and could be ignored to localize the

Table 5: Comparison of Keypoint Estimation Results (%) on Ob-
jectNet3D+. Note: KLPNet represents KLPNet with only the ba-
sic backbone; KLPNet? additionally includes the cross-stage (three
stages) feature aggregation scheme; KLPNet† contains both cross-
stage feature aggregation scheme and Location Instability Strategy
(LIS). LIS of CLPGM provides feedback to CKLM to adjust and
fine-tweak the keypoint localization.

Method bed sofa bookshelf chair monitor

KLPNet 69.6 68.9 71.8 74.1 79.6
KLPNet? 81.3 75.8 76.3 77.6 85.3
KLPNet† 87.4 81.1 83.4 84.8 89.7

Method car bus aircraft mirror piano

KLPNet 63.1 76.9 69.0 69.1 63.5
KLPNet? 69.7 80.1 73.3 73.5 69.8
KLPNet† 74.5 85.9 78.9 78.7 72.6

Method laptop diningtable basket eraser flashlight

KLPNet 62.9 77.4 71.2 69.3 65.3
KLPNet? 64.3 81.3 74.3 72.8 70.8
KLPNet† 71.8 84.9 78.7 76.5 74.1

Methodmicrowave console guitar loudspeaker knife

KLPNet 91.4 63.7 71.6 68.8 64.1
KLPNet? 96.1 68.5 74.8 73.9 69.3
KLPNet† 77.8 71.3 79.9 79.1 72.6

Method keyboardextinguisher camera hammer train

KLPNet 71.8 65.8 70.3 64.8 73.2
KLPNet? 74.7 69.4 75.9 69.5 76.8
KLPNet† 80.3 72.3 80.1 74.3 81.1

Method cabinet helmet coffee maker printer blackboard

KLPNet 84.3 72.1 73.4 71.3 78.5
KLPNet? 87.9 75.3 76.8 74.8 81.3
KLPNet† 90.1 79.1 81.2 79.7 86.9

Table 6: The performance of the module with different coefficient
setting of the loss function

Setting 1 2 3 4 5 6 7 8 9

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
β 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

AP 55.3 66.4 75.3 73.7 53.8 47.9 39.4 34.3 34.1

target. Based on the accurate detection and localization of
semantic keypoints in the real world, it is accessible to dis-
cern the robot’s location and build the real-world mapping.
To accomplish it, we need to consider how to get the coordi-
nates in the 3D space, which is discussed in the next part.

3D Reconstruction and Rendering
3D Reconstruction (Park et al. 2020) can determine the ob-
ject’s 3D profile, and 3D Rendering (Johnson et al. 2017) is
the final process of creating the actual 2D image or anima-
tion from the prepared scene. The first step of both fields is



Figure 7: KLPNet with depth map in 3D Applications.

Figure 8: KLPNet with multi-view consistency in 3D Applications.
V and V ’ represents two views; {P1, · · · , Pi} and {P1’, · · · , Pi’}
represent points under the corresponding view;O denotes the orig-
inal point and e denotes the epipolar.

to project the 2D object into a 3D space. Thus, we propose
two latent approaches to implement the projection: KLPNet
with multi-view consistency and KLPNet with depth map,
which are shown in Figure 7 and Figure 8.

Figure 7 illustrates the first approach for converting 2D
targets into a 3D space. Two sensors are utilized to capture
useful information, color image and depth map. Using KLP-
Net, the keypoints can be localized and connected on the 2D
heatmap. Depth map affords the space distance of each pixel
in the 2D image. After merging the heatmap and depth map,
it is conceivable to reconstruct the 3D object in the 3D space.

The second approach to build the 3D object is to utilize
the multi-view consistency instead of the depth map. After
obtaining the location and connection of keypoints on the
2D neighbour keyframes, the known rigid rotation (R) and
translation (T) between the two views is provided as a su-
pervisory signal. As shown in the 8, V1 and V2 are the two
views that best match one view to the other. A multi-view
consistency loss can be considered to measure the discrep-
ancy between the two sets of keypoints under the ground
truth transformation. Once the transformation is corrected,
it is conceivable to reconstruct the 3D object in 3D space.

F. Blemish
During the testing, we also find some blemishes as shown
in Figure 9. The top-left one is a desk with four additional
legs, which lead our model to misjudge the four basic bottom
nodes; The bottom-left one is a sofa-bed combination that
baffles the model to localize the node accurately since the
bed and sofa have a different predefined number of nodes;
The top-right contains an unusual desk and a chair who have
more legs than normal samples during training; Our model
predicts all nodes on the chair correctly but fails to connect

Figure 9: Some unusual cases.

all chair legs. We notice that our model cannot self-adapt
the node number. The predefined number of nodes per class
limits the performance of the model. In the future, a novel
supervised approach can be designed to depict more suitable
edges for specific geometrical patterns of the objects.

References
Agarap, A. F. 2018. Deep learning using rectified linear
units (relu). arXiv preprint arXiv:1803.08375.
Bailey, T., and Durrant-Whyte, H. 2006. Simultaneous lo-
calization and mapping (slam): Part ii. IEEE robotics & au-
tomation magazine 13(3):108–117.
Cui, L., and Ma, C. 2019. Sof-slam: A semantic visual slam
for dynamic environments. IEEE Access 7:166528–166539.
Durrant-Whyte, H., and Bailey, T. 2006. Simultaneous lo-
calization and mapping: part i. IEEE robotics & automation
magazine 13(2):99–110.
Ghiasi, G.; Lin, T.-Y.; and Le, Q. V. 2019. Nas-fpn: Learning
scalable feature pyramid architecture for object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 7036–7045.
Gomez-Ojeda, R.; Moreno, F.-A.; Zuñiga-Noël, D.; Scara-
muzza, D.; and Gonzalez-Jimenez, J. 2019. Pl-slam: A
stereo slam system through the combination of points and
line segments. IEEE Transactions on Robotics 35(3):734–
746.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.
Johnson, P. T.; Schneider, R.; Lugo-Fagundo, C.; Johnson,
M. B.; and Fishman, E. K. 2017. Mdct angiography with
3d rendering: a novel cinematic rendering algorithm for en-
hanced anatomic detail. American Journal of Roentgenology
209(2):309–312.
Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.;
and Belongie, S. 2017. Feature pyramid networks for ob-
ject detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2117–2125.



Liu, S.; Qi, L.; Qin, H.; Shi, J.; and Jia, J. 2018. Path aggre-
gation network for instance segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 8759–8768.
Mur-Artal, R.; Montiel, J. M. M.; and Tardos, J. D. 2015.
Orb-slam: a versatile and accurate monocular slam system.
IEEE transactions on robotics 31(5):1147–1163.
Park, K.; Mousavian, A.; Xiang, Y.; and Fox, D. 2020. La-
tentfusion: End-to-end differentiable reconstruction and ren-
dering for unseen object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10710–10719.
Tan, M.; Pang, R.; and Le, Q. V. 2020. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10781–10790.
Wei, F.; Sun, X.; Li, H.; Wang, J.; and Lin, S. 2020. Point-
set anchors for object detection, instance segmentation and
pose estimation. arXiv preprint arXiv:2007.02846.
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; and He, K. 2017. Ag-
gregated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1492–1500.
Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; and Ren, D.
2020. Distance-iou loss: Faster and better learning for
bounding box regression. In AAAI, 12993–13000.


