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Black Footed Albatross

Figure 1. Illustration of the cleaned examples and the removed ex-
amples (i.e. noise) for the source class ‘Black Footed Albatross’.

In this document, we provide more supporting results to
show the effectiveness of our AdarGCN under both the new
SSFSL and conventional FSL settings. Firstly, we illustrate
the cleaned examples and the removed examples (i.e. noise)
obtained by our AdarGCN-based label denoising (LDN)
method under the new SSFSL setting. Secondly, we present
the weight distributions of outlying examples obtained by
our AdarGCN-based FSL method under the conventional
FSL setting. These qualitative results (shown in Sections 1
and 2) suggest that our AdarGCN can effectively deal with
both noisy and outlying images, explaining its superior per-
formance under both FSL settings. Thirdly, we report some
quantitative 5-way 1-shot results under the conventional FS-
L setting, together with the 5-way 5-shot results in the main
paper,to validate the effectiveness of our AdarGCN with d-
ifferent 5-way settings.

1. Qualitative Results for Label Denoising

As mentioned in the main paper, out of the crawled im-
ages per source class, around 40% are noise; after LDN us-
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Figure 2. Illustration of the weight distributions of outlying exam-
ples over the CUB and mini-ImageNet datasets.

ing our AdaGCN, this percent is reduced to around 10%.
Some examples of the removed images are shown in Fig-
ure[I} We find that both the removed images and the cleaned
images for the source class ‘Black Footed Albatross’ are
generally recognized correctly by our AdarGCN-based LD-
N method. This means that our AdarGCN can deal with the
noisy images and thus achieve superior performance under
the new SSFSL setting.

2. Qualitative Results for Conventional FSL

Figure [2] shows the weight distributions of outlying ex-
amples obtained by our AdarGCN under the conventional
FSL setting. It can be clearly observed that the weight of
branch c is forced to be significantly larger than those of
the other two branches (i.e. b, d) for the outlying examples
so that their negative effect can be effectively limited. This
also explains why our AdarGCN can achieve state-of-the-



Models GCN minilmageNet
MatchingNet [12] no 43.60
ProtoNet [[10] no 46.61
MAML [4] no 48.70
Relation Net [[11] no 50.44
TPN [8] no 53.75
R2-D2 [2] no 51.80
IMP [1] no 49.60
Baseline++ [3] no 48.24
MetaOptNet [[7] no 53.23
GCN [9] yes 50.33
wDAE-GNN [3] yes 51.02
EGCN [6] yes 53.24
AdarGCN (ours) yes 55.71

Table 1. Comparative 5-way 1-shot results for conventional FSL.

art results under the conventional FSL setting. Note that
the problem of outlying images is really very hard to solve,
because it tends to occur in a variety of ways (e.g. occlu-
sion, very small scale, and so on). However, this challeng-
ing problem is shown to be well solved by our AdarGCN,
due to its adaptive aggregation mechanism.

3. More Quantitative Results

Since only the 5-way 5-shot protocol is considered in the
main paper for fair comparison to the latest GCN-based FSL
methods, we also provide the 5-way 1-shot results for con-
ventional FSL in Table [I] to make more extensive compar-
ison. It can be seen that our AdarGCN FSL method yields
2-5% improvements over the latest GCN-based FSL meth-
ods [9}16,15] and 2—-7% improvements over the state-of-the-
art FSL baselines [8, 2, [1} 13} [7]], validating the effectiveness
of our AdarGCN module under one-shot setting.

References

[1] Kelsey R. Allen, Evan Shelhamer, Hanul Shin, and Joshua B.
Tenenbaum. Infinite mixture prototypes for few-shot learn-
ing. In ICML, pages 232-241, 2019.

[2] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In ICLR, 2019.

[3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classi-
fication. In ICLR, 2019.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, pages 1126-1135, 2017.

[5] Spyros Gidaris and Nikos Komodakis. Generating classifica-
tion weights with GNN denoising autoencoders for few-shot
learning. In CVPR, pages 21-30, 2019.

[6] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D.
Yoo. Edge-labeling graph neural network for few-shot learn-
ing. In CVPR, pages 11-20, 2019.

(7]

(8]

(9]

(10]

(11]

(12]

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In CVPR, pages 10657-10665, 2019.

Yanbin Liu, Juho Lee, Minseop Park, Sachoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate
labels: Transductive propagation network for few-shot learn-
ing. In ICLR, 2019.

Victor Garcia Satorras and Joan Bruna. Few-shot learning
with graph neural networks. In ICLR, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077—4087, 2017.
Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In CVPR, pages 1199—
1208, 2018.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray
kavukcuoglu, and Daan Wierstra. Matching networks for one
shot learning. In Advances in Neural Information Processing
Systems, pages 3630-3638, 2016.



