
Facial Emotion Recognition with Noisy Multi-task Annotations
**Supplementary Material**

A. Architecture and Implementation Details
The detailed architecture is illustrated in Fig. 1. The encoder GY is a modified VGGNet [47] which predicts clean labels

ŷ1, . . . , ŷT , a mean µ, a variance �, from which the latent noise vector y0 is sampled as y0 ⇠ N (µ,�2I) (Fig. 1 (a)). The
decoder GX (Fig. 1 (b)) takes the concatenation of a Gaussion noise ỹ0 ⇠ N (0, I), and all the input noise labels ỹ1, . . . , ỹT
as the input, which is first fed through a linear layer, and then upsampled by deconvolutional blocks to produce the image x̃.

The discriminator D consists of separate streams for each input variable, which is a CNN stream for the input image,
and different multilayer perceptron (MLP) streams for the input labels or noise. The marginal scores Sx, Sy0 , . . . , SyT are
computed as a linear transformation of the output features of each stream. In the meantime, the output features of each stream
are concatenated into an MLP to produce the joint score Sjoint for the joint distribution matching. The CNN stream for the
image includes several residual blocks and one attention block. Each residual block is a simple residual convolutional block
which contains two [convolution, ReLU] blocks and one pooling operation. The attention block is a self-attention CNN
block [60] which aims to utilize features from all locations, for modeling long range and multi-level dependencies. The MLP
stream is an MLP block which gives the summation of outputs of four separate MLP sub-blocks. See the detailed architecture
layouts of residual block, the attention block, and MLP components of D in Fig. 2.

The proposed model is implemented with PyTorch, using ADAM [22] as the optimizer (�1 = 0.9, �2 = 0.999). The
learning rate are set to 1e-4. � is always set to 1. In each iteration of the alternating optimization schedule, GY and GX are
jointly updated once, followed by two consecutive updates of D. See analysis of the joint distribution learning weight � in
Section C.

Figure 1. Architecture details of (a) the encoder GY , (b) the decoder GX , (c) the discriminator D.

B. Confusion Matrix and Visualization
The confusion matrices for the multi-task models on facial emotion datasets in both RAF-base and AffectNet-base cases

are shown in Fig. 3. The confusion matrices of the pretrained models which are utilized to create noisy training set are only
for reference. Comparing the confusion matrices of the multi-task VGGNet models and the proposed multi-task models, the
diagonal values of the proposed models are generally higher than the VGGNet models, showing that the proposed model can
achieve more precise predictions by the joint distribution learning from multi-label models. However, the confusion matrices
of the three different kinds of models still show similar patterns, suggesting that learning from noisy labels in practical
emotion dataset is still a difficult task.



Figure 2. Detailed architecture layouts of components of discriminator D: (a) the residual block, (b) the attention block (T denotes transpose
and � is a learnable parameter), (c) the MLP block.

Figure 3. Confusion matrices for the RAF-base (the first row) and AffectNet-base (the second row) cases: (a) the pretrained model to create
noisy training set, (b) multi-task VGGNet, (c) the proposed multi-task model trained on the noisy labels.

Images in Fig. 4 are examples of success and failure cases of the proposed multi-task model in RAF-base and AffectNet-
base cases. Our proposed model gives correct labels in many cases where the Co-teaching method [16] or multi-task VGGNet
gives inconsistent labels with the human annotation, which we believe to be relatively clean in the test set. There are also
some failure cases of the proposed model, for example, where sad faces with mouth open are predicted to be happy, or happy
faces with extreme activated expressions are predicted to be angry.

C. Study on Joint Distribution Weight �
Fig. 5 illustrates the test accuracy curve of the proposed multi-task model on both RAF-base and AffectNet-base cases

with different joint distribution learning weights � varying among 0.2, 0.4, 0.6, 0.8 and 1.0. Since the joint distribution
learning serves as a regularizar in the proposed model, the optimal choice of � varies among different datasets depending



Figure 4. Examples of images and corresponding predictions on RAF-base (the first five rows) and AffectNet-base (the last five rows)
cases, with the first four columns where the predictions of our proposed multi-task model are consistent with the human label in the test set,
and the last column contains some failure cases of the proposed model. L: human label of test set, V: multi-task VGGNet, C: Co-teaching
model [16] trained with only emotion class labels, P: proposed multi-task model.

on the noise intensity. In spite of this, the value of � can be roughly set according to the prior knowledge about the noise
intensity. For example, we are given the prior knowledge that the human annotations on AffectNet are relatively worse than
those on RAF, as RAF adopts an EM algorithm to achieve a better annotation on about 40 annotations on each sample while
AffectNet’s annotation is merely from one single annotator. Accordingly, the pretrained model on AffectNet is assumed to
offer relatively noisy labels than the one trained on RAF. Using this prior knowledge, we roughly set � to two values, i.e.,
0.4 and 1.0, for the model training on AffectNet and RAF respectively. In addition, a general pattern can be observed: the
model performance will increase with � increasing in a certain range, and then decrease with � increasing further as the joint
distribution learning overweights the task-specific losses (i.e., cross-entropy loss and CCC loss in our case).

In addition to using the prior knowledge on the noise intensity, we find the training curve of the joint distribution loss can
also help us to infer a suitable � for better training of the proposed model. We empirically observe that the optimal models in
both RAF-base (� = 1.0) and AffectNet-base (� = 0.4) cases consistently converge to a value around 2.6 for the generator
joint distribution loss, and a value around 0.45 for the discriminator joint distribution loss (see Fig. 6). The RAF-base case
is more robust when � is varied in a certain range, because it requires a higher � due to the higher noise intensity in labels.
Therefore, this observation can be used as the second strategy to roughly estimate an appropriate � to train the proposed
model on new data with noisy multi-task labels.

If the incorrect labels form a specific distribution with a high noise ratio, the joint distribution learning might fail due to
the large gap between the noise label distribution and the true label distribution. However, in most practical cases of facial
emotion machine labels, the incorrect labels are outliers of the true distribution, and the proposed distribution-to-distribution
supervision is based on such assumption, therefore robust to the noise.



Figure 5. Curve of test accuracy during training with different joint distribution learning weights (i.e. � values) varying among 0.2, 0.4,
0.6, 0.8, 1.0 on (a) RAF-base (b) AffectNet-base cases. The optimal � is selected as 1.0 and 0.4 for RAF-base and AffectNet-base cases
respectively.

Figure 6. Curve of joint distribution loss during training with different joint distribution learning weights (i.e. � values) (a) RAF-base (b)
AffectNet-base cases. The first row is the joint distribution loss of generator (i.e., the encoder GY and decoder GX ), and the second row
is the joint distribution loss of the discriminator D).


