1 Visualization of different structure format
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Figure 1: TableBank versus ICDAR2013 structure annotations

2 Experimental Details

2.1 GTE-Table Network

We make a few changes to the original RetinaNet model in GTE-Table. We add anchors with aspect ratio {0.1,0.25} to each
feature map for wide tables. The input image size is 900 * 643.

2.2 GTE-Cell Network

The GTE-Cell Network is composed of a line classifier network at the top of the hierarchy and two object detection models
that specialize on different styles of tables. The graphic line classifier network is a ResNet50 model with a binary classifier
on top. This network is first pretrained with the attributes derived from SD-Tablesdataset and then fine-tuned on the
ICDAR train dataset. The ground truth data is derived from the presence of nearby vertical graphical lines (as detected by
a PDF parser) for each cell. We make the following changes to the original RetinaNet model in GTE-Cell for cell object
detection. Since the scale of cell is generally small, we use pyramid levels P3 and P5. We find that skipping P4 allows
us to add additional anchors while keeping a similar level of computational efficiency. We add anchors with aspect ratio
{0.1,0.25} to each feature map to better detect very wide cells. For denser scale objects, at each level we use anchors of sizes
{0.5,0.7,1,1.2,1.6} of the set of aspect ratio anchors. We add additional smaller scale anchors because the majority of cells
are much smaller than the anchors generated from P3. The input image size is 965 % 1350.

2.3 Hyper-parameter Selection

For joint training, our hyper-parameters are selected from characteristics of the ICDAR training data. On average, the height
of a character is 10 pixels. We wanted to check the text density of tables just inside and just outside of the table; we chose
5 pixels (or half a character height) for this purpose. As a result, we chose p; = 5 and gy = 5. We also chose o = 1/8 (the
density threshold) as we calculated the cell density of tables in the training set and found that the value at the lower end
of the density scale (5th percentile) was around 1/8. We did not select the minimum (which was around 0.1) in case there
are outliers in the training set. Finally, 77 = 1/10 in Eq.?? gives less penalty to false negative bounding boxes to better
reflect the proportion between false positive and false negative bounding boxes (as we found that an equal penalty caused
the iterative training to become unstable very quickly).

For inference time, we found there may be overlapping tables that can be quite different in shape while having similar
confidence levels. Thus, we choose a set of parameters (us, g, Y2, €, 0) to prioritize tables with the most tabular character-
istics. In particular, we prioritize tables not having any cells within 2 lines of text outside the table (us = —20 pixels) that
are not contained already by other non-overlapping tables, while having many cells just inside the table, up to 0.25 of area
(i.e., ug = {0.25 * (22 — x1),0.25 * (y2 — y1)} pixels).

3 Cluster-based Algorithm for Generating Cell Structure

4 Additional cell detection examples

See Figures 2 and 3.



Algorithm 1 Cell Boundary to Structure Cluster Algorithm

1: procedure PREPROCESS CELL BOUNDING BOXES

2 for b in cellboxes do

3 if not INTERSECT (b, textbozes) then

4: DELETE b

5: if INTERSECT(b, textboxes) then

6 b.bounding_box = MAX(b.bounding_box, textbox.bounding_box)
7 if INTERSECT(b, cellbozes) then

8 b.bounding_box = MAX(b.bounding_box, cellbox.bounding_box)
9

: procedure ASSIGN CELL Row AND COLUMN LOCATION
10: while not INTERSECT (b, cellboxes) do

11: b.xl < b.xl —5

12: b.x2 < b.x2 +5

13: for b in cellboxes do

14: numeo <+ MAX(CNTINTERSEC(b.midz, cellboxes), numee)
15: NUM oy < MAX(CNTINTERSEC(b.midy, cellboxes), num; oy )

16: alignment,,, alignment, <— GET_XY_ALIGNMENT (cellbozes)
17: for b in cellboxes do

18: b.align, < ALIGN_DATA(b.x1, b.midx, b.x2, alignment,,)
19: b.align, < ALIGN_DATA(b.y1, b.midy, b.y2, alignment,)
20: cOlposy < KMeans(cellpoxes.aligng, numee)

21: TOWposT < KMeans(cellyoxes.align,, numyo.y)

22: for b in cellbores do

23: b.col <~ ALIGN_TO_COL(b.aligng, colposs, alignmenty)

24: b.row <= ALIGN_.TO_ROW (b.align,, colpesy, alignment,)
25: procedure ASSIGN TEXT LINES TO TABLE

26: for b in textboxres do

27: if INTERSECT(b, cellbozes) then

28: b.col + cellbox.col

29: b.row + cellbox.row

30: else

31: b.col <~ ALIGN_TO_COL(b.align, colpesy, alignment,)
32: b.row <— ALIGN_.TO_ROW (b.align,, colpesy, alignment,)

33: procedure SPLIT CELL TEXT LINES WHEN NEIGHBOR IS EMPTY
34: for r in num,,,, do

35: for ¢ in num,, do

36: if ISSEMPTY(r, c) then

37: neighbories: < GET_CELLS(r — 1, ¢) + GET_CELLS(r + 1, ¢)
38: for b in neighbor;c,: do

39: b.col <~ ALIGN_TO_COL(b.align,, colpess, alignment,,)

40: b.row <= ALIGN_TO_ROW (b.align,, colpesy, alignment,)
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Figure 2: Additional cell boundary to structure examples
5 Detailed ICDARI13 Results
See Tables 1 and 2.
Table 1: ICDAR 2013 table detection results with additional comparisons
Category Method Input type || Recall Precision F1 Cpt Pu
Commercial Softwares FineReader PDF 99.71 97.29 98.48 | 142 148
OmniPage PDF 96.44 95.69 96.06 | 141 130
Nitro PDF 93.23 93,97 93.60 | 124 144
Acrobat PDF 87.38 93.65 90.40 | 110 141
Non Deep Learning | ICST-Table[1] PDF 26.97 74.96 39.67 | 28 41
TableSeer|6) PDF 33.35 88.36 48.64 0 29
Nurminen|2] PDF 90.77 92.10 91.43 | 114 151
TABFINDI9] PDF 98.31 92.92 95.54 | 149 137
pdf2table[11] PDF 85.30 63.99 73.13 | 100 94
TEXUS[7] PDF 90.23 88.32 89.26 | 114 138
Deep Learning Haol3] Image 97.24 92.15 94.63 / /
DeepDeSRT8] Tmage 96.15 97.40 96.77 | / /
TableBank|[5] Image / / 96.25 / /
Ours GTE Image 99.77 98.97 99.31 | 146 146
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Table 2: Cell Structure results on ICDAR2013 with additional comparisons

Category Method GT Border? || Rec. Prec. F1
Commercial Softwares FineReader N 88.35 87.10 87.72
OmniPage N 83.80 84.60 84.20
Nitro N 67.93 84.59 75.35
Acrobat N 72.62 81.59 76.85
Academic Systems Nurminen|2] N 80.78 86.93 83.74
TEXUS[7 N 84.23 81.02 82.59
KYTHE][2] N 48.11 57.40  52.20
pdf2table[11] N 59.51 57.52  58.50
TABFIND|[9] N 70.52 68.74  69.62
Ours GTE N 92.72 9441 93.50
Academic Systems Tensmeyer[10] Y 94.64 95.89 95.26
Nurminen|2] Y 94.09 95.12 94.60
Khanl[4] Y 90.12 96.92 93.39
TABFINDI9] Y 64.01 61.44 62.70
Ours GTE Y 95.77 96.76 96.24

ICDAR19 evaluation metric ambiguities

See Figure 4.
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Figure 3: Example Cell detection errors
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Figure 4: The detected cell bounding boxes in the following images seem to be correct by eye and include all characters in
the ground truth cell but has zero matches at IOU=0.9.
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