1 Visualization of different structure format

 1
 <tabular>
 2
 3

 ICDAR2013 Structure
 <tabular>
 <tabular><tabular>
 <

Figure 1: TableBank versus ICDAR2013 structure annotations

2 Experimental Details

2.1 GTE-Table Network

We make a few changes to the original RetinaNet model in GTE-Table. We add anchors with aspect ratio $\{0.1, 0.25\}$ to each feature map for wide tables. The input image size is 900 * 643.

2.2 GTE-Cell Network

The GTE-Cell Network is composed of a line classifier network at the top of the hierarchy and two object detection models that specialize on different styles of tables. The graphic line classifier network is a ResNet50 model with a binary classifier on top. This network is first pretrained with the attributes derived from SD-Tables dataset and then fine-tuned on the ICDAR train dataset. The ground truth data is derived from the presence of nearby vertical graphical lines (as detected by a PDF parser) for each cell. We make the following changes to the original RetinaNet model in GTE-Cell for cell object detection. Since the scale of cell is generally small, we use pyramid levels P3 and P5. We find that skipping P4 allows us to add additional anchors while keeping a similar level of computational efficiency. We add anchors with aspect ratio $\{0.1, 0.25\}$ to each feature map to better detect very wide cells. For denser scale objects, at each level we use anchors of sizes $\{0.5, 0.7, 1, 1.2, 1.6\}$ of the set of aspect ratio anchors. We add additional smaller scale anchors because the majority of cells are much smaller than the anchors generated from P3. The input image size is 965 * 1350.

2.3 Hyper-parameter Selection

For joint training, our hyper-parameters are selected from characteristics of the ICDAR training data. On average, the height of a character is 10 pixels. We wanted to check the text density of tables just inside and just outside of the table; we chose 5 pixels (or half a character height) for this purpose. As a result, we chose $\mu_1 = 5$ and $\mu_2 = 5$. We also chose $\alpha = 1/8$ (the density threshold) as we calculated the cell density of tables in the training set and found that the value at the lower end of the density scale (5th percentile) was around 1/8. We did not select the minimum (which was around 0.1) in case there are outliers in the training set. Finally, $\gamma_1 = 1/10$ in Eq.?? gives less penalty to false negative bounding boxes to better reflect the proportion between false positive and false negative bounding boxes (as we found that an equal penalty caused the iterative training to become unstable very quickly).

For inference time, we found there may be overlapping tables that can be quite different in shape while having similar confidence levels. Thus, we choose a set of parameters (μ_5 , μ_6 , γ_2 , ϵ , δ) to prioritize tables with the most tabular characteristics. In particular, we prioritize tables not having any cells within 2 lines of text outside the table ($\mu_5 = -20$ pixels) that are not contained already by other non-overlapping tables, while having many cells just inside the table, up to 0.25 of area (i.e., $\mu_6 = \{0.25 * (x^2 - x^1), 0.25 * (y^2 - y^1)\}$ pixels).

3 Cluster-based Algorithm for Generating Cell Structure

4 Additional cell detection examples

See Figures 2 and 3.

Algorithm 1 Cell Boundary to Structure Cluster Algorithm
1: procedure Preprocess Cell Bounding Boxes
2: for b in cellboxes do
3: if not INTERSECT $(b, textboxes)$ then
4: DELETE b
5: if INTERSECT(<i>b</i> , <i>textboxes</i>) then
6: $b.bounding_box = MAX(b.bounding_box, textbox.bounding_box)$
7: if INTERSECT $(b, cellboxes)$ then
8: $b.$ bounding_box = MAX($b.$ bounding_box, $cellbox.$ bounding_box)
9: procedure Assign Cell Row and Column Location
10: while not INTERSECT $(b, cellboxes)$ do
11: $b.x1 \leftarrow b.x1 - 5$
12: $b.x2 \leftarrow b.x2 + 5$
13: for b in cellboxes do
14: $num_{col} \leftarrow MAX(CNT_INTERSEC(b.midx, cellboxes), num_{col})$
15: $num_{row} \leftarrow MAX(CNT_INTERSEC(b.midy, cellboxes), num_{row})$
16: $alignment_x, alignment_y \leftarrow \text{GET}_XY_ALIGNMENT(cellboxes)$
17: for b in cellboxes do
18: $b.align_x \leftarrow \text{ALIGN_DATA}(b.x1, b.midx, b.x2, alignment_x)$
19: $b.align_y \leftarrow \text{ALIGN_DATA}(b.y1, b.midy, b.y2, alignment_y)$
20: $col_{posx} \leftarrow \text{KMeans}(cell_boxes.align_x, num_{col})$
21: $row_{pos}x \leftarrow \text{KMeans}(cell_boxes.align_y, num_{row})$
22: for b in cellboxes do
23: $b.col \leftarrow ALIGN_TO_COL(b.align_x, col_{posx}, alignment_x)$
24: $b.row \leftarrow ALIGN_TO_ROW(b.align_y, col_{posy}, alignment_y)$
25: procedure Assign Text Lines to Table
26: for b in textboxes do
27: if $INTERSECT(b, cellboxes)$ then
$28: \qquad b.col \leftarrow cellbox.col$
$29: \qquad 0.row \leftarrow cellbox.row$
30: else $h = h = h + A L I C N T O C O L (h = h = n + a - a - h = n + a - a + a - a + a + a + a + a + a + a$
31: $0.cot \leftarrow \text{ALIGN}_1 O_0 \text{OL}(0.attgh_x, cot_{posx}, attghtment_x)$
32: $0.70w \leftarrow \text{ALIGN}_{10} \cup \text{KOW}(0.attight_y, colposy, attightment_y)$
33: procedure SPLIT CELL TEXT LINES WHEN NEIGHBOR IS EMPTY
$34: \text{for } r \lim num_{row} \text{do}$
35: Ior c in num_{col} do
30. If IS_ENTITI(7, c) then 37. $peighbor, \leftarrow CET CELLS(n-1, c) \pm CET CELLS(n+1, c)$
$\begin{array}{ccc} \text{for } h \text{ in } neighbor, d \mathbf{o} \end{array}$
$\frac{1}{39} \qquad \qquad h \ col \leftarrow ALIGN \ TO \ COL(h \ alian \ col \ alianment)$
40: $h row \leftarrow ALIGN TO ROW(h alian col alianment)$
$+0. \qquad \qquad 0.1000 (1110111011011010000000000000000$

	All 2	lame	Non	iteme	Trend	iteme					<u></u>
Content domain and process	Number	Percent	Number	Percent	Number	Percent	Content domain and process		Number	Percent	N
Total items	135	100	60	100	75	100	Total items		135	100	60
Purposes of reading		_		_		_	Purposes of reading		_		
Literary experience	72	53	33	55	39	52	Literary experience		72	53	33
Acquire and use information	63	47	27	45	36	48	Acquire and use information		63	47	27
Processes of comprehension	_	_	_	_	_	_	Processes of comprehension				
Fodus on and retrieve explicitly stated information	33	24	14	23	19	25	Focus on and ratriava explicit	ly stated information	22	24	14
Interpret and integrate ideas and information	38	28	18	30	20	27	Focus on and retrieve explicit	iy stated information		24	20
Examine and evaluate content, language, and textual elements	18	13	8	13	10	13	Make straightforward inferen	ces	40	34	20
							Interpret and integrate ideas a	nd information	38	28	18
							Examine and evaluate content	t, language, and textual elemer	ıts 18	13	8
											_
Faculty cluster	Popul	ation s	size		Sample	size	Faculty cluster	Population size	Samp	le siz	e
incluity chuster	Lopui	atton			Jumpie	Size			^		=
Sciences	1269	(19.99)	76)		101(20.4	1%)	Sciences	1269 (19.9%)	101(2	.0.4%))
Social Sciences	2212	(50.60	77)		247(50)	DOL-	a a .				÷
Social Sciences	0212	(30.0%	<u>(a)</u>	. l	247(50.0	170)	Social Sciences	3212 (50.6%)	247(5	0.0%))
Humanities	1168	(18.49)	70)		95(19.3	%)					÷
	205	(1.1.1.0)		<u> </u>	E1 (10.0	CT 1	Humanities	1168 (18.4%)	95(19	.3%)	
Civil Sciences	105	(11.1%)			DI(10.3)	%)					-
							Civil Sciences	705 (11.1%)	51(10	.3%)	
							· · · · · · · · · · · · · · · · · · ·				_
Some Y	ear 1	No Yea	ar 1			_					
Head S	Jari I	Head S	Iari								_

Sample Group	Some Year 1 Head Start Participation	No Year 1 Head Start Participation	Total	
All Randomly Assigned (N=4,667):				
3-Year-Old Cohort				
Head Start Group	85.1%	14.9%	100%	
Control Group	17.3%	82.7%	100%	
4-Year-Old Cohort				
Head Start Group	79.8%	20.2%	100%	
Control Group	13.9%	86.1%	100%	

Sample Group All Randomly Assigned (N=4,667):	Some Year 1 Head Start Participation	No Year 1 Head Start Participation	To
3-Year-Old Cohort Head Start Group	85.1%	14.9%	10
Control Group	17.3%	82.7%	10
4-Year-Old Cohort Head Start Group	79.8%	20.2%	10
Control Group	13.9%	86.1%	10

t Number Pe

75 100

Figure 2: Additional cell boundary to structure examples

5 Detailed ICDAR13 Results

See Tables 1 and 2.

		-					
Category	Method	Input type	Recall	Precision	F1	Cpt	Pu
Commercial Softwares	FineReader	PDF	99.71	97.29	98.48	142	148
	OmniPage	PDF	96.44	95.69	96.06	141	130
	Nitro	PDF	93.23	$93,\!97$	93.60	124	144
	Acrobat	PDF	87.38	93.65	90.40	110	141
Non Deep Learning	ICST-Table[1]	PDF	26.97	74.96	39.67	28	41
	TableSeer[6]	PDF	33.35	88.36	48.64	0	29
	Nurminen[2]	PDF	90.77	92.10	91.43	114	151
	TABFIND[9]	PDF	98.31	92.92	95.54	149	137
	pdf2table[11]	PDF	85.30	63.99	73.13	100	94
	TEXUS[7]	PDF	90.23	88.32	89.26	114	138
Deep Learning	Hao[3]	Image	97.24	92.15	94.63	/	/
	DeepDeSRT[8]	Image	96.15	97.40	96.77	/	/
	TableBank[5]	Image	/	/	96.25	/	/
Ours	GTE	Image	99.77	98.97	99.31	146	146

Table 1: ICDAR 2013 table detection results with additional comparisons

Category	Method	GT Border?	Rec.	Prec.	F1
Commercial Softwares	FineReader	Ν	88.35	87.10	87.72
	OmniPage	Ν	83.80	84.60	84.20
	Nitro	Ν	67.93	84.59	75.35
	A crobat	Ν	72.62	81.59	76.85
Academic Systems	Nurminen[2]	Ν	80.78	86.93	83.74
	TEXUS[7]	Ν	84.23	81.02	82.59
	KYTHE[2]	Ν	48.11	57.40	52.20
	pdf2table[11]	Ν	59.51	57.52	58.50
	TABFIND[9]	Ν	70.52	68.74	69.62
Ours	GTE	N	92.72	94.41	93.50
Academic Systems	Tensmeyer[10]	Y	94.64	95.89	95.26
	Nurminen[2]	Y	94.09	95.12	94.60
	Khan[4]	Y	90.12	96.92	93.39
	TABFIND[9]	Y	64.01	61.44	62.70
Ours	GTE	Y	95.77	96.76	96.24

Table 2: Cell Structure results on ICDAR2013 with additional comparisons

6 ICDAR19 evaluation metric ambiguities

See Figure 4.

References

- [1] J. Fang, L. Gao, K. Bai, R. Qiu, X. Tao, and Z. Tang. A table detection method for multipage pdf documents via visual seperators and tabular structures. 2011 International Conference on Document Analysis and Recognition, pages 779–783, 2011.
- M. C. Göbel, T. Hassan, E. Oro, and G. Orsi. Icdar 2013 table competition. 2013 12th International Conference on Document Analysis and Recognition, pages 1449–1453, 2013.
- [3] L. Hao, L. Gao, X. Yi, and Z. Tang. A table detection method for pdf documents based on convolutional neural networks. 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pages 287–292, 2016.
- [4] S. A. Khan, S. M. D. Khalid, M. A. Shahzad, and F. Shafait. Table structure extraction with bi-directional gated recurrent unit networks. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1366–1371. IEEE, 2019.
- [5] M. Li, L. Cui, S. Huang, F. Wei, M. Zhou, and Z. Li. Tablebank: Table benchmark for image-based table detection and recognition. ArXiv, abs/1903.01949, 2019.
- [6] Y. Liu, K. Bai, P. Mitra, and C. L. Giles. Tableseer: automatic table metadata extraction and searching in digital libraries. In JCDL, 2007.
- [7] R. Rastan, H.-Y. Paik, and J. Shepherd. Texus: A task-based approach for table extraction and understanding. In DocEng, 2015.
- [8] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed. Deepdesrt: Deep learning for detection and structure recognition of tables in document images. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 01:1162–1167, 2017.
- [9] A. C. e. Silva. Parts that add up to a whole: a framework for the analysis of tables. *PH.D. dissertation, The University of Edinburgh*, 2010.
- [10] C. Tensmeyer, V. I. Morariu, B. Price, S. Cohen, and T. Martinez. Deep splitting and merging for table structure decomposition. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 114–121. IEEE, 2019.
- [11] B. Yildiz, K. Kaiser, and S. Miksch. pdf2table: A method to extract table information from pdf files. In IICAI, 2005.

Figure 3: Example Cell detection errors

(a) Correct cell detection

(b) Oversplit cell detection

			Des	ign eff	ect		
Proportion	1.7	1.8	1.9	2.0	2.5	3.0	3.5
0.99	1.360	1.440	1.520	1,600	2.000	2.400	2.800
0.95	272	288	304	320	400	480	560
0.90	136	144	152	160	200	2.4.0	280
0.85	91	96	101	107	133	160	187
0.80	68	72	76	80	100	120	140
0.75	54	58	61	64	80	96	112
0.56-74	51	54	57	60	75	90	105
0.55	51	54	57	60	75	90	105
0.50	51	54	57	60	1/5	90	105
0.45		54		60	75	90	105
0.26-44	51	54	51	60		90	105
0.20	69	73	74	80	100	120	140
0.15	91	96	101	107	1 3 3	160	187
0.10	136	144	152	160	200	240	280
0.05	272	288	304	320	400	480	560
0.01	1,360	1,440	1,520	1,600	2,000	2,400	2,800

.

(c) Missing Cell detection

Variable	Mean	Std. Dev.	Min	Max
Age	50.8	15.9	21	90
Men	0.47	0.50	0	
East	0.28	0.45	d	1
Rural	0.15	0.36	Ld	
Married	0.57	0.50	0	1
Single	0.21	0.40	Ld	
Divorced	0.13	0.33	Цd	1
Widowed	0.08	0.26	<u>Ld</u>	<u>u</u>
Separated	0.03	0.16	Q	1
Partner	0.65	0.48	ų	<u> </u>
Employed	0.55	0.50	0	1
Fulltime	0.34	0.47	Q	4
Parttime	0.20	0.40	D	ų.
Unemployed	0.08	0.28	Ш	<u>u</u>
Homemaker	0.19	0.40	Q	4
Retired	0.28	0.45	<u>u</u>	<u> </u>
Household size	2.43	1.22	1	g
Households with children	0.37	0.48	0	
Number of children	1.67	1.38	U	8
Lower secondary education	0.08	0.27	Q	
Upper secondary education	0.60	0.49	Q	
Post secondary, non tert. education	0.12	0.33	Щ	<u>u</u>
First stage tertiary education	0.17	0.38	Ц	
Other education	0.03	0.17	Щ	<u> </u>
Household income (Euro/month)	2,127	1,389	22	22,500
Gross wealth - end of 2007 (Euro)	187,281	384,198	0	7,720,000
Gross financial wealth - end of 2007 (Euro)	438,855	114,128	U	2,870,000

(d) Overmerged cell detection

Figure 4: The detected cell bounding boxes in the following images seem to be correct by eye and include all characters in the ground truth cell but has zero matches at IOU=0.9.

	S&P	Moody's	DBRS	Fitch	A.M. Best
The Manufacturers Life Insurance Company	AA-	A1	AA(Low)	AA-	A+ (Superior)
John Hancock Life Insurance Company (U.S.A.)	AA-	A1	Not Rated	AA-	A+ (Superior)
Manulife (International) Limited	AA-	Not Rated	Not Rated	Not Rated	Not Rated
Manulife Life Insurance Company	A+	Not Rated	Not Rated	Not Rated	Not Rated
Manulife (Singapore) Pte. Ltd.	AA-	Not Rated	Not Rated	Not Rated	Not Rated

	asii: 0.78			
	Change in			
		Change in net		
		participating	Attributed to	income attributed
0.84	osti: 9.72	policyholders'	shareholders'	to shareholders
For the year ended December 31, 2018	Total	account	account	(post-tax)
Mogtality and morbidity updates	\$ 319	\$ (192)	s 511.	\$ (360)
Lapses and policyholder behaviour	287	2.0 m D.C		(226)
Investment return assumptions	(96)		(146)	143
Other updates	(684)	(94)	(590)	392
Net impact	\$ (174)	\$ (236)	\$ 62	\$ (51)

	AGR	celle 0.83	coll: 0.88	cell: 0.70	call: 0.73	cell: 0.75 L3	calls 0.52	celle 0.66	M-URB	cell: 0.82 M-RUR	cell: 0.87	call: 0.86
AGR	cells 0.88	call: 0.91 1 438	cells 0.81 515						osilt 0.85	cells 0.85 1 580	cells 0.83	sells 0.86 8 263
cell: 0.90	coll: 0.82	439	386						1 378	colk 0.85		^{coll: 0.85} 4 507
FOR	cell: 0.87 1 168	cell: 0.83 519	5 530						2 733	2 564	347	cell: 0,57
celk 0.77	colle 0.87											csil: 0.78 1 986
colle 0.68	call: 0.74	1 598										cell: 0.68 1 767
cell: 0.71			°≈## 0.78 2 193									sells 0.74 2 193
cell: 0.65	2 073											2 073
celk 0.81 K		200	^{calls} 0.85									4 439
cell: 0.78 M-URB				221	celk 0.87 976	cell: 0.87 1 749	celt: 0.83	cell: 0.80 1 848		· · · · · · · · · · · · · · · · · · ·		^{celle 0.81} 5 024
oolik 0.82 M-RUR				cell: 0.86 1 766	^{cult} 0.84	cell: 0.85	1 843	695			cell: 0.77	oulle 0.82
RES		0.85 313						call: 0.91	calle 0.78			×+11: 0.87 2 229
TOT	8 263	4 507	celle 0,30 12 celle 0,36 862	cell: 0.90 1 986	1 767	2 193	2 073	4 439	5 024	5 669	2 229	