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Abstract

This paper explores efficient techniques to improve Po-

larNet model performance to address the real-time se-

mantic segmentation of LiDAR point clouds. The core

framework consists of an encoder network, Atrous spa-

tial pyramid pooling(ASPP)/Dense Atrous spatial pyramid

pooling(DenseASPP) followed by a decoder network. En-

coder extracts multi-scale voxel information in a top-down

manner while decoder fuses multiple feature maps from

various scales in a bottom-up manner. In between en-

coder and decoder block, an ASPP/DenseASPP block is

inserted to enlarge receptive fields in a very dense man-

ner. In contrast to PolarNet model, we use weighted

cross entropy in conjunction with Lovasz-softmax loss to

improve segmentation accuracy. Also this paper acceler-

ates training mechanism of PolarNet model by incorporat-

ing learning-rate schedulers in conjunction with Adam op-

timizer for faster convergence with fewer epochs without

degrading accuracy. Extensive experiments conducted on

challenging SemanticKITTI dataset shows that our high-

resolution-grid model obtains competitive state-of-art re-

sult of 60.6 mIOU @21fps whereas our low-resolution-grid

model obtains 54.01 mIOU @35fps thereby balancing ac-

curacy/speed trade-off.

1. Introduction

Scene understanding is an essential prerequisite for au-

tonomous vehicles. Semantic segmentation helps in under-

standing the scene by predicting a meaningful class label for

each individual sensor data point. Recent approaches to se-

mantic segmentation exploit different data sources. Camera

based approaches utilize either monocular [1] or stereo im-

ages [2], fish-eye cameras or depth cameras. These camera-

based approaches have drawbacks such as limited field-of-

view, difficult to operate under low-contrast conditions and

inability to determine precise distances within the surround-

ing outdoor environment. On the other hand, LiDAR sen-

sors, which use reflected laser pulses to scan the area around

a vehicle, can overcome such limitations. LiDAR data is

used to create a 360◦ point cloud, which solves the limited

field of view problem experienced in camera-based systems

and LiDAR data is more robust to changes in weather/ il-

lumination issues in indoor/outdoor environments. Thus,

they are generally considered as more important sensors

than cameras for autonomous vehicles driving safety and

are adopted by nearly all auto-makers today [3].

Even though LiDAR point clouds are superior com-

pared to images, it has its own drawbacks like point clouds

are sparse with varying density, highly unordered, noisy,

lack colour and texture features that characterize the object

classes. Such complexity, in addition to the dynamic nature

of the environment, motivates us to improve performance of

semantic-segmentation of LiDAR point clouds.

Current LiDAR based semantic segmentation can be

categorized in three approaches. The first approach uses

purely point-wise methods acting directly on the 3D point

cloud [4, 5]. The second approach builds on top of the

well developed field of image segmentation, which fo-

cuses on CNN architectures for segmenting RGB images

[6, 7, 8, 9]. To this end, individual LiDAR sweeps are pro-

jected to 2D range images, which then serve as input to cus-

tom CNNs [10, 11, 12]. The resulting 2D predictions are

then post-processed with non-learned Conditional Random

Fields(CRF) or KNN-based voting to recover more accurate

labels for each 3D point. The third approach partitions the

point cloud into 3D voxels [13, 14, 15, 16, 17, 18], thereby

applying sparse 3D convolutions to segment point cloud.

In this work, we summarize our contribution by combin-

ing the best of the first two approaches:

• We present a unified,hierarchical way to construct

meaningful features from point cloud to improve se-

mantic segmentation accuracy by designing bottom-

up voxel feature aggregation from multiple scales and

top-down pathway of pyramid-like structure.
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Figure 1. MSVCBASPP Architecture

• To improve semantic segmentation accuracy, class bal-

anced weighted cross entropy loss is used in conjunc-

tion with Lovasz-Softmax loss [19].

• To boost segmentation performance, ASPP [7](Atrous

spatial pyramid pooling) is used to concatenate feature

maps generated by Atrous convolution with different

dilation rates, so that the neurons in the output feature

map contain multiple receptive field sizes to encode

multi-scale information and simultaneously achieves a

large receptive field size.

• To boost segmentation performance, DenseASPP [20]

was used where each Atrous convolution layer only

makes use of Atrous filters with reasonable dilation

rate (d ≤ 24), so that the neurons in the output fea-

ture map not only contains larger receptive fields but

also dense feature maps.

• Improves training time of PolarNet [21] by incorporat-

ing learning-rate scheduler to the existing Adam opti-

mizer [22]. This technique guides the network to ac-

celerate training mechanism with fewer epochs with-

out degrading accuracy as compared to baseline mod-

els.

All the above significant contributions are combined

to form a model Multi-Scale Voxel Class Balanced

ASPP(MSVCBASPP) network which has better semantic-

segmentation performance over base-line model PolarNet

[21]. The input to MSVCBASPP model is the rasterized im-

age of the full LiDAR scan, and network outputs point-wise

classification scores together with uncertainty measures.

Quantitative and qualitative experiments on the Se-

manticKITTI dataset [23] shows that the proposed

MSVCBASPP model significantly outperforms other state-

of-the-art networks in terms of point-wise segmentation ac-

curacy while having much fewer parameters, lower compu-

tation time and real-time segmentation with only one GPU.

2. Related work

In this section, recent works in semantic segmentation

of 3D point cloud data will be summarized. Recently

great progress has been achieved in semantic segmenta-

tion of 3D LiDAR point clouds using deep neural networks

[4, 5, 10, 11]. The core distinction between these advanced

methods lies not only in the network design but also in the

representation of the point cloud data. There are three com-

mon approaches of representing unstructured and unordered

3D LiDAR points.

2.1. Pointwise

Point-wise methods [24, 25] directly process the raw ir-

regular 3D points without applying any additional transfor-

mation or pre-processing. Shared multi-layer perceptron

based PointNet [24], the subsequent work PointNet++ [25],

and superpoint graph SPG networks [26] are considered in

this group. Although such methods are powerful on small

point clouds, their processing capacity and memory require-

ment, unfortunately, becomes inefficient when it comes to

the full 360 degree LiDAR scans. To accelerate point-wise

operations, additional cues, e.g. from camera images, are

employed as successfully introduced in [27].
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2.2. Projection based

Projection based techniques convert 3D point cloud to

2D grids to enable the use of 2D CNNs. SqueezeSegv3 [11],

SalsaNext [12], and RangeNet++ [10] utilize the spherical

projection mechanism, which converts the point cloud to a

frontal-view (range) image, and adopt the 2D convolution

network on the pseudo image for segmentation. PolarNet

[21] follows the bird-view projection, which projects point

cloud data into small grids from the bird view and takes the

height as a whole. Instead of partitioning points in a Carte-

sian coordinate system, they use a polar coordinate system

for encoding point clouds.

2.3. 3D voxel partition

3D voxel partition is another routine of point cloud en-

coding [13, 14, 15, 16, 17, 18]. It converts a point cloud into

3D voxels. 3D U-Net [18] proposes voxel partition and 3D

U-Net on biomedical data and shows successful application

on difficult microscopic datasets. OccuSeg [14], SSCN [15]

and SEGCloud [16] follow this line to utilize the voxel par-

tition and apply 3D convolutions for LiDAR segmentation.

In the above three approaches, the closest work to ours is

[21] which introduces a mix of both point-based approach

and projection based approach. Here we introduce efficient

techniques to improve PolarNet [21] model keeping accu-

racy and real-time applicability.

3. Method

Given a training dataset of N LiDAR scans.

{(Pi, Li), i = 1, 2...N},Pi ∈ Rni∗4 is the point set

containing ni LiDAR points. Each row of Pi consists

of four features representing one LiDAR point p namely

(x, y, z, reflection). (x, y, z) represents cartesian coor-

dinate of the point relative to the scanner and reflection
represents the intensity of returning laser beam. Li ∈ Zni

contains the object labels for each point pj in pi. Our goal

is to learn a segmentation model f(., θ) parameterized by θ
so that the difference between the prediction f(Pi) and Li

is minimized.

3.1. Pointcloud representation

As in [21], we represent point cloud to Polar bird-eye-

view which has two fold advantages as compared to Carte-

sian coordinate. First, it evenly distributes points. Second,

more balanced point distributions thereby reducing the bur-

den on predictors.

Accordingly, we quantize points in Polar coordinate by

converting each point on the XY plane to azimuth and ra-

dius with the sensor’s location as the origin. We then assign

points to grid cells based on their quantized azimuth and

radius.

3.2. Pseudo image generation

Let l be a point in a point cloud with coordinates

x, y, z and reflectance r. As a first step, the point cloud

is discretized into an evenly spaced grid in the ρ − θ
plane creating a set of uniform sized voxels. In the sec-

ond step, points in each voxel are then augmented with

(ρc, θc, zc, ρ, θ, z, x, y, r) where the subscript c denotes dis-

tance to the arithmetic mean of all points in the voxel. The

augmented lidar point is now D = 9 dimensional. Next,

we use a simplified version of PointNet [24] where, for

each point, a linear layer is applied followed by BatchNorm

[28] and ReLU [29]. Once encoded, the features are scat-

tered back to the original voxel locations to create a pseudo-

image of size (B,C,H,W ) where H and W indicate the

height and width of the pseudo-image.

3.3. CNN backbone

MSVCBASPP backbone has a UNet style of architecture

consisting of top-down encoder network and bottom-up de-

coder network. Top-down encoder network produces fea-

tures at increasingly small spatial resolution and a second

bottom-up decoder network that performs upsampling and

concatenation of the top-down features.

In this work, UNet architecture has been modified to

adopt Feature Pyramid Network (FPN) [30] which is de-

signed to combine multi-scale features of point cloud. Be-

sides the bottom-up path used in multi-scale feature aggre-

gation, we build a top-down path to efficiently construct a

rich, hierarchical feature pyramid for multiple voxels fea-

tures.

The top-down encoder backbone can be characterized by

a series of five CNN blocks Block (S = 2, L = 2, F ). First

CNN block is performed with a stride S = 1, then suc-

cessive CNN blocks in top-down encoder is down sampled

with a stride S = 2. Each block has L = 2, 3x3 2D ring

convolution-layers with F = 64, 128, 256, 512, 512 output

channels, each followed by BatchNorm [28] and a ReLU

[29]. Total down-sampling factor of encoder backbone net-

work is 16 w.r.t pseudo bird-eye-view image.

The bottom-up decoder network takes final features from

each encoder block and are combined through up sampling

and concatenation as follows. First, the features are up sam-

pled, UP (Sin, Sout, F ) from an initial stride Sin to a fi-

nal stride Sout using a bi-linear interpolation and then con-

catenated with encoder features. On the concatenated fea-

tures, we apply CNN blocks. The final output features are

a concatenation of all features that originated from different

strides values.

3.4. Atrous spatial pyramid Pooling

It is a powerful tool inserted between encoder and de-

coder to enrich features of encoder by obtaining multi-scale
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context information. ASPP [7] segments objects at multi-

ple scales by probing CNN features at multiple scales using

Atrous convolutions in cascade/parallel to capture multi-

scale context by adopting multiple Atrous rates. Also it

captures global context using spatial-2D features to boost

performance.

Figure 2. Atrous spatial pyramid pooling

After extracting feature maps from the backbone net-

work, four parallel Atrous convolutions with different di-

lation rates are applied to handle segmenting the object at

different scales. Image-level features are also applied to

incorporate global context information by applying global

average pooling on the last feature map of the backbone.

After applying all the above operations parallelly, the re-

sults of each operation along the channel are concatenated

and 1 x 1 convolution is applied to get larger receptive field

feature maps.

3.5. Dense Atrous spatial pyramid Pooling

DenseASPP [20] combines the advantages of parallel

and cascaded use of dilated convolutional layers and pro-

duces more scale features over a wider range. The name

of DenseASPP is inherited from DenseNet [31] and also

has the advantages of DenseNet like alleviating the gradient

drop problem and has fewer parameters.

In DenseASPP, layers share information through skip

connections and are interrelated. With dense connections,

not only a denser feature pyramid is included, but also larger

receptive fields are embedded to perceive wider environ-

ment information.

3.6. Class balanced loss function

Most of the publicly available datasets have an extreme

imbalance between different classes. In the case of au-

tonomous driving, traffic-sign/bicycle/motor-cycle appears

less in the scene compared to road/car/truck/pedestrian.

Such an imbalance between classes makes the network to

be more biased towards classes that have more samples in

training and thereby resulting in relatively poor segmenta-

tion results.

To boost the accuracy of the under-represented classes,

we update the softmax cross-entropy loss with the smoothed

Figure 3. Dense Atrous spatial pyramid pooling

frequency of each class. Our class-balanced loss function

is now weighted with the inverse square root of class fre-

quency, defined as

Lwce(y, ŷ) = −
∑

i

αiP (yi)log(P (yi)), (1)

where

αi = 1/
√

(fi).

where y and ŷ are the true and predicted labels and fi
is the number of points belongs to ith class. This tech-

nique strengthens the network each point that belongs to

less frequent classes in the dataset. In addition to class bal-

anced weighted cross entropy, we use Lovasz-Softmax loss

[19] in the learning procedure to maximize the intersection-

over-union (IoU) score, i.e. the Jaccard index which was

followed in PolarNet [21] model.

4. Experimental results and analysis

We experiment our proposed MSVCBASPP on large-

scale SemanticKITTI dataset [23] for autonomous driv-

ing. We conduct several experiments on various as-

pects: network performance on test/validation dataset,

training/inference timing analysis, hyper parameter tuning

based on grid size and state-of-art comparisons.

4.1. Dataset details

SemanticKITTI [23] is a point-level re-annotation of the

LiDAR part of the famous KITTI dataset [32]. It has a to-

tal of 43551 scans sampled from 22 sequences collected in

different cities in Germany. It has 104452 points per scan

on average and each scan is collected by a single Velodyne

HDL-64E laser scanner. There are 19 challenging classes

in total. We follow SemanticKITTIs subset split protocol

and use ten sequences for training, one for validation and

the rest of them for testing. We present several baselines

that have been presented with SemanticKITTI. We report

the segmentation performance on the SemanticKITTI test-

ing subset.
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4.2. Evaluation metric

The performance of our model is measured on class level

segmentation tasks by comparing each predicted point label

with the corresponding ground truth annotation. As the pri-

mary evaluation metrics, we report intersection-over-union

(IoU) results for each class as

IOUi =
|Pi ∩Gi|

|Pi ∪Gi|
. (2)

where Pi is the predicted point set of class i and Gi denotes

the corresponding ground truth set, whereas |.| returns the

total number of points in a set. In addition, we report the

average IoU score over all the nineteen classes.

4.3. Environment setup

To train MSVCBASPP, we employ the Adam optimizer

[22] with the initial learning rate of 0.01, batch-size of 2

and ran the training for 50 epochs. We use TeslaK80 GPU

16GB for training and TitanV GPU 12GB to do inference.

To increase the amount of training data, we add 25% prob-

ability each to randomly flip a point cloud along x, y and

x + y axes for data augmentation. Also we randomly ro-

tate about the z−axis in the range of [−5o,+5o]. We use

the same PolarNet[21] grid spaces to be [distance : 0 ∼
70m, z : −3 ∼ 1.5m]. Also we set the respective grid sizes

as [480, 360, 32], [360, 240, 32] and [160, 120, 16].

4.4. Ablation study

Here we conduct multiple extensive ablation study of the

proposed model on SemanticKITTI validation/test dataset

considering accuracy and training/inference speed.

4.4.1 Analysis on SemanticKITTI validation dataset

In the Table-1, MSV, CB, PAM+CAM [33], ASPP1,

ASPP2, DenseASPP1 and DenseASPP2 represents Multi-

scale voxelization, Class balancing, Position attention mod-

ule+channel attention module, Atrous spatial pyramid pool-

ing with dilation rate [6, 12, 18], Atrous spatial pyramid

pooling with dilation rate [8, 16, 24], Dense ASPP with dila-

tion rate [2, 4, 8, 12, 16] and Dense ASPP with dilation rate

[3, 6, 12, 18, 24].

BSL[21] MSV CB PAM+CAM[33] ASPP1 ASPP2 DenseASPP1 DenseASPP2 mIOU

Y - - - - - - - 58.17

Y Y - - - - - - 58.545

Y Y Y - - - - - 58.714

Y Y Y Y - - - - 58.162

Y Y Y - Y - - - 60.4

Y Y Y - - Y - - 60.6

Y Y Y - - - Y - 58.942

Y Y Y - - - - Y 59.213

Table 1. Model performance on SemanticKITTI validation dataset

From the Table-1, we observe that using ASPP2 in con-

junction with MSV+CB, we can get maximum mIOU of

60.6 over performing baseline PolarNet [21] model by 1.5

mIOU. Also we observe that using DenseASPP2 in con-

junction with MSV+ CB we can get maximum mIOU of

59.213 over performing baseline model by 1.1 mIOU.

4.4.2 Analysis on SemanticKITTI test dataset

From the Table-2, we observe that on test dataset the same

MSV+CB+ASPP2 achieved maximum mIOU of 60.01

which was observed in the case of validation dataset with

a 60.6 mIOU. Our best model MSV+CB+ASPP2 outper-

forms baseline PolarNet [21] model by a margin of 2.8

mIOU. Also, we observe that using DenseASPP2 in con-

junction with MSV+CB we can get maximum mIOU of

58.95 over performing baseline model by 1.74 mIOU.

BSL[21] MSV CB ASPP2 DenseASPP2 mIOU

Y - - - - 57.2

Y Y Y - - 58.6

Y Y Y Y - 60.01

Y Y Y - Y 58.95

Table 2. Model performance on SemanticKITTI test dataset

Ideally on both validation and test dataset, DenseASPP2

should perform better than ASPP2, but from the Table-[1,2]

results are vice-versa. DenseASPP improves the semantic-

segmentation performance, using DenseNet [31] architec-

ture as a backbone whereas MSVCBASPP model uses UNet

style of architecture. Hence MSVCBASPP authors believe

DenseASPP2 didn’t outperform ASPP2 based architecture.

4.4.3 Training time analysis on using LR schedulers

From the Table-3, we observe that using One-Cycle LR

[34] in conjunction with Adam optimizer achieves faster

training convergence only with 6 epochs to reach a maxi-

mum mIOU of 57.94 as compared to baseline [21] which

uses only Adam optimizer without scheduler to reach 58.17

mIOU with 23 epochs.

BSL[21] Cyclic[35] CosAnn[36] Expn OneCycle[34] mIOU epochs

Y - - - - 58.17 23

Y Y - - - 54.18 16

Y - Y - - 57.91 18

Y - - Y - 51.18 10

Y - - - Y 57.94 6

Table 3. Model performance and training time analysis on using

learning-rate schedulers

Using One-Cycle LR [34] scheduler, accuracy doesn’t

improve but this scheduler guides the network to train faster

only with fewer epochs. This helped us to carry out a lot

of experiments like ASPP1, ASPP2, PAM+CAM, DenseA-

SPP1 and DenseASPP2.
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4.4.4 Analysis of network performance and inference

timings on varying grid sizes

In the Table-4, MODEL represents MSVCBASPP. Also

G1,G2,G3,G4 represents tunable grid sizes (480,360,32),

(360,240,32), (160,120,16) and (80,60,8).

BSL[21] Model-G1 Model-G2 Model-G3 Model-G4 mIOU Runtime(ms)

Y - - - - 58.17 48

- Y - - - 60.6 49

- - Y - - 57.97 42

- - - Y - 54.12 29

- - - - Y 43.92 24

Table 4. Model performance and inference timing analysis for var-

ious grid sizes on validation dataset

From the Table-4, we observe that MODEL-G1 achieves

maximum mIOU of 60.6 with run-time around 49ms per

frame. Whereas our lighter-weight MODEL-G3 achieves

54.12 mIOU consuming only 29ms which strikes balance

between accuracy, speed and suitable for real-time vehicle

testing. Also we observe that as grid size reduces further,

performance of MODEL-G4 severely degrades.

4.4.5 Analysis of network params and FLOPS count

From the Table-5 below, we observe that our MSVCBASPP

model parameter and FLOPS count is increased by the addi-

tion of multi-scale voxelization along with ASPP modules

as compared to PolarNet [21] model but the run-time differ-

ence between the models are very marginal.

Model mIOU Runtime(ms) Params(M) FLOPS(GMAC)

BSL[21] 58.17 48 13.6 135

MSVCBASPP(ours) 60.6 49 22.4 142

Table 5. Model parameter and FLOPS count analysis

4.5. Stateofart comparison analysis

Figure-4 shows visualization results of MSVCBASPP

model on random sequence of SemanticKITTI test dataset.

Table-6 shows the performance comparison between our

approach and multiple baselines on SemanticKITTI test

dataset. The results demonstrate that our model outper-

forms many state-of-art methods and yet remain competi-

tive in SemanticKITTI leaderboard at the time of submis-

sion.

5. Conclusion

In this paper, we propose efficient techniques to sig-

nificantly improve model performance not only in speed

and accuracy but also guides the model to train faster

with fewer epochs. Our empirical experiments on Se-

manticKITTI dataset based on MSVCBASPP model shows

that the efficient techniques applied consistently improves

LiDAR semantic segmentation model which is comparable

to state-of-art techniques in SemanticKITTI leaderboard.

Moreover our experiments also shows that our network

can balance between speed/accuracy with high-resolution-

grid model(60.6 mIOU, 21fps) and low-resolution-grid

model(54.01 mIOU, 35fps) using only one GPU.
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Figure 4. Results visualization on SemanticKITTI test dataset
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PointNet[24] 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6

PointNet++[25] 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1

SPLATNET[37] 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.8 41.5 0.0 68.7 27.8 72.3 35.9 35.8 13.8 0.0 22.8

TangentConv[38] 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 35.9

RandLA-Net[5] 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 38.9 86.9 56.3 81.4 61.3 66.8 49.2 47.7 53.9

RangeNet53++[10] 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2

3D-MiniNet[39] 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6 55.8
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