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Abstract

Autonomous vehicles increasingly rely on cameras to

provide the input for perception and scene understanding

and the ability of these models to classify their environment

and objects, under adverse conditions and image noise is

crucial. When the input is, either unintentionally or through

targeted attacks, deteriorated, the reliability of autonomous

vehicle is compromised. In order to mitigate such phenom-

ena, we propose DriveGuard, a lightweight spatio-temporal

autoencoder, as a solution to robustify the image segmenta-

tion process for autonomous vehicles. By first processing

camera images with DriveGuard, we offer a more univer-

sal solution than having to re-train each perception model

with noisy input. We explore the space of different autoen-

coder architectures and evaluate them on a diverse dataset

created with real and synthetic images demonstrating that

by exploiting spatio-temporal information combined with

multi-component loss we significantly increase robustness

against adverse image effects reaching within 5-6% of that

of the original model on clean images.

1. Introduction

Automated vehicles are a fundamental component of in-

telligent transportation systems and will improve safety,

traffic efficiency and driving experience, and reduce human

errors [1]. Deep learning solutions are used in several au-

tonomous vehicle subsystems in order to perform percep-

tion, sensor fusion, scene analysis, and path planning (e.g.,

[2, 3, 4, 5, 6]). State-of-the-art and human-competitive

performance have been achieved by such algorithms on

many computer vision tasks related to autonomous vehi-

cles [7]. Nevertheless, over the last years it was demon-

strated that deep-learning-based solutions are susceptible to

various threats and vulnerabilities that can cause the au-

Figure 1: Even simple attacks and image noise models can

have a detrimental effect on the image segmetation output.

Noisy Process: Effect of noise attack on segmentation out-

put. Notice, that the objects are not localized well and ob-

jects such as cyclists are completely lost. DriveGuard: At-

tempts to restore the image quality resulting in improved

segmentation performance.

tonomous vehicles to misbehave in unexpected and poten-

tially dangerous ways. Besides physical attacks that can

induce erroneous behaviour there is also the possibility that

the camera data can be manipulated directly thus eliciting

false algorithmic inferences. This can cause an AI-based

perception module/controller to make incorrect decisions,

such as when an autonomous vehicle fails to detect a lane/

parking marking and results in a collision [8, 9]. An exam-

ple of such an attack can be either data injection by mali-

cious software installation [10] in the CAN bus, projecting

patterns [11], manipulation of over the air updates [12, 13],

or even faults [14]. Hence crafting appropriate defenses

against attacks that go beyond the hardware layer is impor-

tant to realize safe autonomous driving [9, 15, 8].

Recently, these systems have attracted increased atten-

tion within academia, and the academic community has be-

gun to investigate the systems’ robustness to various attacks
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targeting the camera sensors and the underlying computer

vision algorithms [16]. Even though adversarial attacks

have gained much interest in recent years they may fail

to manifest in real-world applications [17], while studies

demonstrated the effect of attacking on the camera sensor

data by adding noise and artifacts can also be detrimental

[18]. Hence, we focus on the problem of image distor-

tions like added noise and image manipulations, that can

cause scene structural elements (e.g. traffic signs, pedestri-

ans, etc.) to not be detected. Such attacks are easy to be

added as the attacker does not need to have any information

regarding the underlying algorithm and models and can lead

to erroneous output of a perception module (Fig. 1). Exist-

ing pre-processing approaches, such as filtering (bilateral or

gaussian) even though effective against specific attack types

may fail to completely remove artifacts.

This is an extremely challenging task because of its in-

herent nature that involves both spatial and temporal con-

text. Recently, many deep learning based approaches, such

as AutoEncoders are shown to be more effective than these

classical methods. However, existing implementations in-

corporate only on the spatial context [19], [20]. Models that

incorporate both Spatial and Temporal Dimensionalities are

employed for similar tasks but are based on heavy and inef-

ficient methods, such as LSTMs [21].

To proactively mitigate the effects of deteriorated image

quality, in this paper we propose DriveGuard, an approach

that uses convolutional autoencoder models to improve the

robustness of the image segmentation models used in appli-

cations of self-driving cars, as shown in Fig. 1. Note, that

while it is possible to train the segmentation model directly

with augmentations, our approach allows to simultaneously

guard other tasks beyond segmentation. Furthermore, it per-

mits us to also develop suitable mechanisms to detect image

quality degradation attacks, however, this goes beyond the

scope of this work. Specifically, we investigate the effect of

different architectures under different metrics for both im-

age quality and segmentation. Our main contributions are

as follows:

• We propose a lightweight spatio-temporal autoencoder,

utilizing separable convolutions, as an image reconstruction

tool for robustifying semantic segmentation for autonomous

vehicle applications.

• We investigate different architectures and loss function

combinations, the structural similarity index (SSIM [14]

and mean square error (MSE), for better structure under-

standing and pixel-wise restoration respectively.

• We consider a combination of traditional noise mod-

els and more targeted attacks, on a more challenging

dataset comprised of realistic and synthetic data with di-

verse weather conditions generated from an autonomous

driving simulator.

We evaluate the mitigation performance of the different

approaches using traditional metrics and study its impact on

the semantic segmentation outcome. We manage to restore

most of the segmentation performance from heavily dis-

torted images to within 5−6% of the original model applied

on clean images. Besides the predominance demonstrated

by our quantitative results, the incorporation of the tempo-

ral context allows our model to mitigate extreme attacks of

blank regions and stacked lines which spatial autoencoders

were unable to overcome. Overall, this approach provides

a more universal defence against different forms malicious

processes that can be integrated not only with different seg-

mentation models, but with other 2D tasks as well (e.g., ob-

ject detection [22]) as it is agnostic to the underlying scene

understanding model.

2. Background and Related Work

2.1. Problem overview

Image deterioration attacks aim to alter the input image

in order to lead the vehicle perception modules to fail. In

contrast to adversarial examples these attacks are not guided

by a target label but the objective is to cause a general drop

in the image quality so that the perception module’s out-

put becomes erroneous. These attacks are rather simple and

do not require an attacker to have knowledge or access to

any perception model and thus can be considered as more

common. An attacker can manage to access critical vehicle

systems and thus be able to directly manipulate the camera

image via modification through internal malicious software

(Fig. 1) [8]. Given such deliberate or unintentional events

the objective is to be able to restore the image quality to a

good enough level so that the perception module (e.g., se-

mantic segmentation) is able to still perform with adequate

accuracy.

2.2. Image Filtering Techniques

Methods of image restoration are a topic of research in

the last decades [23]. Filtering approaches such as Gaus-

sian Filters used in studies [24], [25], [20] where they apply

tranformations of pixels based on the information provided

by a window of neighbors. The lack of stronger adaptivity

to the underlying structure of the image and objects of inter-

est is a major drawback of these classical approaches. Other

approaches include the Bilateral Filter [25], [26], based on

the Gaussian Filter, which integrates pixel-wise spatial and

photometric disparity. The advantage is that the computa-

tional complexity remains low but it employs adaptivity to

the window used. On the downside, in low disturbed images

it doesn’t perform accordingly. Other works measure frame

quality assessments as features, and then the computed fea-

tures are analyzed for fault detection [14], or try to remove

environmental noise such as [27].
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2.3. Deep Image Restoration

Autoencoders are one type of the profound deep learn-

ing methods utilized for the removal of noise in images and

restoring image quality [19]. Denoising auto-encoders can

be stacked to form a deep network by feeding output of the

previous convolution layer to the current layer as input. Jain

and Seung [28] proposed to use Convolutional Neural Net-

works (CNN) to denoise natural images. The deployment

of fully Convolutional Neural Networks (FCNN) for image

denoising was proposed by [28], [20]. Such approaches de-

ploy autoencoder architectures similar in structure with the

FCNN, commonly used for semantic segmentation or super-

resolution [29].

This approach is followed by Xiao Jiao Mao [20], with a

symmetrical architecture between the decoder and encoder

layers used for image restoration. It aims to reconstruct per-

turbed images by upsampling the features encoded in the la-

tent space by the encoder and thus recovering degraded fea-

tures from the image. The contribution of this approach is

the deployment of skip-layer connections, which strengthen

the autoencoder by feeding lower-level features from early

layers to later layers in the network. It has also the advan-

tage of the training converging faster.

The effect of different loss functions was tested in the

tasks of Image restoration and super-resolution by [25],

[30]. Zhao et al,[30] proposed the application of SSIM as

a loss function in the sense that it would provide a better

understanding of the structure in the images. They compare

the de-facto applied squared norm of error loss with the loss

functions of the SSIM family on both forementioned tasks.

They conclude that their proposals outperform the models

trained by the standard squared error not only due to the bet-

ter structure understanding but also by its poor convergence

performance. The same approach of replacing pixel-wise

loss functions such as MSE with structure similarity ones

was followed by[25], in the task of super-resolution.

The idea of a spatio-temporal autoencoder was investi-

gated in different tasks and approaches by [21], [31]. In the

case of [21] the aim was the prediction of the next frame

with the application of differentiable memory cells for the

task of path-planning, action recognition etc. In [31] the

authors looked into the application of video deblurring pur-

poses. In order to incorporate both the spatial and temporal

dimensionalities they deployed three dimensional convolu-

tion in both domains. Their approach involved the encoding

of multiple neighboring frames. The model was further ex-

tended where it was trained using adversarial training where

the adversarial loss was established to fool the discrimina-

tor on misidentified generated images as real life ones. A

similar approach of a CNN model handling spatio-temporal

information was followed by [32], with the task of recov-

ering the central of the input frames. In [31], neighboring

frames are stacked as the temporal dimensionality of the

data, whereas in [32] they deploy 2D convolutions to handle

the time axis as an extension to the spatial RGB dimension.

In these works the main focus was on reconstructing nat-

ural images. Yet the utilization of such methods for au-

tonomous mobility applications have not been investigated.

Considering the importance of robustifying autonomous ve-

hicles against different types of noise and attacks, we ex-

plore the appealing potential of image reconstruction using

deep convolutional autoencoders.

3. Proposed Approach

3.1. Frame Quality Degradation

To simulate image quality degradation events we ex-

plore different artificial deterioration techniques which in-

clude the addition of noise to the sensed data (Gaussian, Salt

and Pepper, Poisson, etc.), adding artifacts such as horizon-

tal/vertical lines, color blanking out image regions. Then

metrics such as the reconstruction error can be used as a

means for evaluation of the approach. Moreover, the ar-

tificial noise methods are required to be representative of

real-life image attacks. These methods include approaches

that follow probabilistic distribution models such as random

Gaussian as well as targeted attacks such as the scenario of

selective manipulation of the input image like the addition

of artifacts or blank Regions [33].

3.1.1 Traditional Degradation Techniques

The first batch of applied noise distortions concern the

following universally applied and standard noise methods:

Random Gaussian [34], Speckle[35], Salt and Pepper, Pois-

son [36] as well as combinations of these [37]. The noise

level of every noise method is parametrized and probabilis-

tically applied using [38]. In addition, various combina-

tions of noises are also possible which can render the use

of a single technique less successful, hence the need for a

machine-learning-driven approach.

• Gaussian Noise that disturbs the intensity of the pixel x

to arrive at the modified intensity g(x) = 1

σ
√
2π

exp
−(x−µ)2

2σ2 ,

where σ is the standard deviation of the distribution and µ

is the mean.

• Speckle Noise is multiplicative noise such that g(x) =
x+n×x, where n is a random noise model such as gaussian.

• Salt and Pepper Noise noise is applied by replacing a

proportion of pixels with noise on range [min dark value,

max bright value].

• Poisson Noise is noise generated from the data such that

the corresponding output pixel g(x) uses a Poisson random

number generated from a Poisson distribution, with mean

that of pixel x.
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Figure 2: Several autoencoder architectures are investi-

gated: 1) AE: Autoencoder with downsampling and upsam-

pling path. 2) SCAE: Autoencoder with skip connections

for feature enhancement. 3) STAE: A spatio-temporal au-

toencoder with a path that also extracts features from the

previous frame. (Best viewed in color)

3.1.2 Artifact Noise

Another possible attack scenario is the selective addition

of artifacts over specific image regions that can potentially

fool the scene perception module. Going beyond traditional

noise models we aim on mimicking such attacks by adding

blank regions and lines on random locations of the image

(e.g., Fig. 2). Blank Regions and stacked lines represent

the purposely occluded regions and stacked pixels deployed

by the attacker as well as possible dirt-particles that might

reproduce such phenomenon on the camera. These artifacts

are added in random locations in the image and their num-

ber and size can also vary.

3.2. Deep Learning Architecture

We utilize the convolutional autoencoder family of deep

learning networks to build our approach for efficient image

reconstruction. We explore different models as shown in

Fig. 2, formulate a loss to train a model to reconstruct a

degraded image. In all cases the networks are composed

of an encoder that finds an efficient smaller representation

for the latent space and a decoder that upsamples the latent

features in order to reconstruct it to the original dimension.

The model is trained to minimize the reconstruction error

based on unsupervised training with the unaltered input im-

age as the ground truth. For the design and implementation

of our autoencoder we followed a progressive approach of

gradually refining the model with additional techniques and

the outcome of each refinement is further analyzed in the

evaluation section.

3.2.1 Traditional Autoencoder (AE)

The first model is a denoising autoencoder that consists of

4 Layers of encoding, and 4 layers of decoding. It follows

a symmetric encoding-decoding relationship, where corre-

sponding layers in the encoder-decoder have the same depth

and dimensions.

For the encoder, depthwise separable 2D convolutions

are used instead of classical 2D convolutions to lower the

number of parameters and make the computation more ef-

ficient. The depthwise separable convolution deals with

both the spatial dimensions, and the channel dimensional-

ity as well. It factorizes the main convolution operation

into depthwise and pointwise convolutions. Following ev-

ery separable convolution we applied BatchNormalization

at every Layer and used a ReLU as the activation function

as shown in Fig. 2.

3.2.2 Autoencoder with Skip Connections (SCAE)

Early layers are able to identify the lower level features that

mainly depict the latent structure. However, the reduction

of spatial resolution can result in fine level details being

lost during the downsampling process. This results in poor

structure understanding from the decoder which is unable to

reconstruct. To recover them during the upsampling process

we introduce skip connections in the autoencoder architec-

ture. Skip connections in autoencoder architectures, bypass

a number of layers in the network and are combined with

an output of a more advanced layer. In addition, the latter

layers are fed with those fused features. Since we are fo-

cused on retaining the semantic understanding of an image

and not solely concentrated on denoising the image, such

features are of higher importance. An additional advantage

is that it allows better gradient flow, since the loss gradients

are values less than 1, the backpropagating multiplication

of successive layers result in insignificant gradient values at

the first layers. We added two symmetric skip connections

where lower level features are fed to the decoder layers and

are combined through concatenation along the channel axis.

In our autoencoder architecture the output features of the

first and third layers of the encoder were connected to the

second and third layers of the decoder respectively.

3.2.3 Spatio-Temporal Autoencoder (STAE)

Intuitively simple architectures that receive single frames

as inputs have the major weakness of basing their under-

standing only on the spatial dimensionality. On the other

hand, humans don’t base their understanding of structure

or higher-level semantics from single input snaps-frames of

their environment. They make predictions not only from
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appearance and the spatial-axis, but also by motion and the

temporal axis [21]. In order to incorporate the temporal di-

mension in our approach we also encode information from

preceding frames. Through the deployment of sequences

of frames as input to the model we strengthen its under-

standing of object structure. It is an effective approach since

autoencoders are shown to be capable of aligning informa-

tion from consecutive frames where the motion of objects as

well as shifts in the background are handled in techniques of

video deblurring and 3D reconstruction [21], [39]. Further-

more, we expect that the sequence approach can be effective

on identifying noise inconsistencies through the temporal

dimension and that perturbed features can be reconstructed

through accumulation from consecutive frames. In addi-

tion, the utilization of a multi-frame autoencoder avoids the

deployment of LSTMs GRUs etc, which makes the whole

process more efficient.

This version of our autoencoder incorporates a second

input stream which encodes the information of the previ-

ous frame in parallel with the current-frame stream, for the

first two layers. The two streams are concatenated and in-

putted to the third encoding layer. The rest of the autoen-

coder structure and its skip connections remain the same,

thus, the skip connection that passes information from the

output of the first encoding layer to the third decoding layer

is not depreciated. The reason behind this is that we aim for

our structure to be localised as in the current frame, thus,

we pass lower-level features only from the current-frame

stream. Furthermore, the joint output of the third encoding

layer still feeds the second decoding layer.

3.3. Loss function

To train the different autoencoder architectures we ex-

plore two loss functions which we apply as standalone and

combination to study their influence. Specifically, we adopt

the mean square error (MSE) which is typically used to

directly regress pixel values, and the structural similarity

index measure (SSIM) which can be used to assess the

structural similarity between two images. We choose these

among the plethora of existing indexes, because they are

established measures, and because they are differentiable

which is requirement for the backpropagation stage.

• The Mean Square Error (MSE) loss is widely used in

optimization objectives and for restoring image quality in

many existing methods. For a given size m × n image I

and noise image K, the mean square error is defined as:

LMSE =
1

mn

m−1∑

i=0

n−1∑

j=0

[I(i, j)−K(i, j)]2. (1)

• SSIM is an index to compare the similarity of two im-

age from the perspective of brightness, contrast, and struc-

ture. The definition of SSIM is given below and is based on

a window by window basis:

SSIM =
(2µIµK + c1)(2σIK + c2)

(µ2

I + µ2

K + c1)(σ2

I + σ2

K + c2)
, (2)

where µI is the mean of the window from image I ,µK is

the mean of the window from image K, sigma2I is the vari-

ance of the window from image I , σ2

K is the variance of the

window from image K, and c1, c2 are constants set to their

default value as in [40]. Subsequently, the SSIM-based loss

is the average of the SSIM value across window with dimen-

sion (2N +1) centered at (i, j) and across image channels.

LSSIM =
1

mn

m−N∑

i=N

n−N∑

j=N

SSIM(I(i, j),K(i, j)). (3)

The two losses are combined as follows to form a single

loss L = λMSE ×LMSE +λSSIM × (1−LSSIM ), where

λMSE = 1 and λSSIM = 0.1 are empirically selected scal-

ing factors used to balance the loss components. We train

models with each loss individually and combined to further

understand their impact.

3.4. Training

To train the different autoencoder models we construct

image pairs (x, x′) where x′ is the input image, which may

be distorted and x is the undistorted/clean image version.

The model is uninformed of the attack; therefore it must

preserve the image contents and object structures in the

case which the image is not distorted. In order to achieve

this, we needed to use a ratio of undistorted/clean images

for both the training and evaluation stages. Moreover, each

noise degradation method is applied stochastically to gener-

ate x′. In addition, we also apply the same geometric trans-

forms (cropping, rotation, zooming) and photo transforma-

tions (HSV jitter, gamma transforms, etc.) to each image

pair as additional augmentations. Overall, we maintain 1
clean image in every 4 frames. The overall, approaches are

implemented in Tensorflow/Keras and each model is trained

for 200 epochs, with learning rate of 1× 10−4.

4. Experimental Methodology and Evaluation

In this section we describe the general evaluation and

data generation processes as well as the metrics used for

the performance evaluation. An important aspect in our

methodology is that we use the performance of an al-

ready established semantic segmentation model, specifi-

cally DeepLabv3 [41] trained using the Cityscapes dataset,

as our baseline. In this way we study how the proposed ap-

proach can preserve the semantic information of synthetic
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images and the original model performance. Deeplabv3

achieves a 78.6 IoU evaluation score on the Cityscapes

dataset without applying image degradation augmentations.

Hence, with the introduction of noise and the more diverse

dataset we expect this performance to be reduced.

4.1. Datasets

Realistic Dataset: The Cityscapes dataset (CS) [42] is

our choice for real-life data for the training and evaluation

phase. It provides the associated high-quality semantic seg-

mentation annotations with 3900 and 880 images for train

and test respectively, annotated at 20 frames per second

from 50 different cities. It is commonly used as the data

source for autonomous driving computer vision tasks and

state-of-the-art deep learning models.

Diverse conditions - synthetic dataset: Besides artifi-

cially deployed distortions, the model needs to be robust

against different environmental conditions which include

different regional sceneries and different weather condi-

tions. We employ the CARLA simulator [43] to construct

a synthetic dataset (CL). We form a dynamic weather chal-

lenge to evaluate our model’s noise mitigation performance

in conditions where the image reconstruction is more dif-

ficult. We deploy an autonomous vehicle agent to collect

RGB image data as well as ground truth semantic segmen-

tation maps from 5 different towns with dynamic weather

conditions and realistic graphical settings (4 towns used as

training images (1800), 1 town as test images (490) and 1

town as validation images (450)). Diverse weather condi-

tions include cloudy; rainy weather as well as sunset and

night light. The data are continuous and are recorded in

high frame rate so that they can be used both as unique

instances as well as sequences to exploit the temporal do-

main. It is important to note that on synthetic data of clear

and cloudy weather conditions at noon time, the Deeplabv3

model faces an IoU score drop of only about 12.5%, while

on dynamic weather data which cover 80% of the synthetic

dataset, a further drop of about 24% is observed.

A joined dataset was used for the training and testing

of both the autoencoder and semantic segmentation model.

Cityscapes semantic segmentations are labelled based on 30

classes whereas Carla labels semantic segmentations using

only 13 classes. Thus, we devised a common classifica-

tion format and alignment between semantic segmentation

classes for the two data sources.

4.2. Quantitative Evaluation Results

The evaluation process involved examining the differ-

ent trained models and configurations under different lev-

els of deterioration attacks and observe how well each can

reconstruct the image and also robustify the segmentation

process. To evaluate the effectiveness of the different ap-

proaches on mitigating the adverse effects of deterioration

Noise Level 0 - Clean 1 2 3 4

Amount (s&p) 0 0.1 0.2 0.3 0.4

σ
2 0 1 4 9 16

Artifacts - Range (#) 0 1 - 13 13 - 25 25 - 37 37 - 49

Table 1: Parameters for each noise level.

attacks on the semantic segmentation output, we utilize se-

mantic segmentation metrics on the diverse synthetic data

(CL), which provides access to sequential ground truth la-

bels. Beyond that we also use peak signal to noise ratio

(PSNR) along with MSE and SSIM as metrics for evalu-

ating the actual reconstruction performance on the joined

dataset (CS & CL). These are summarized below:

Pixel Accuracy: Percentage of pixels in the image that

are classified correctly.

Intersection-Over-Union Score: the area of overlap be-

tween the predicted segmentation and the ground truth di-

vided by the area of union between the predicted segmenta-

tion and the ground truth.

PSNR: The ratio between the maximum possible power

of a signal and the power of corrupting noise defined by

MSE and given by 10× log10
MAX2

I

MSE

Next we evaluate how each of the refinements have con-

tributed in improving the robustness of image segmentation.

To do so we evaluate 5 different autoencoder models using

different loss combinations, 2 traditional image processing

denoising filters (median and bilateral), and an approach

with unguarded input as baseline. We tested each method

with 5 different noise levels comprising different parame-

ter values for each degradation method (Gaussian, Speckle,

Salt and Pepper, and Poisson). Along with these Noise

Methods the input image was degraded through the addi-

tion of artifacts, of which the number was selected based on

the noise level. The parameters used are shown in Table 1.

4.2.1 Impact of Skip Connections

The simple-plain autoencoder trained using MSE loss can

effectively reduce noise from an image and make the scene

perception process more robust as it achieved to double the

semantic segmentation metrics on attacked images. How-

ever, this simple autoencoder had comparable quantitative

results with the traditional approaches. Specifically, the au-

toencoder could not retain the quality of clean images, and

was outperformed by both Bilateral and Median methods,

something observed through both the quantitative and quali-

tative results. However, in noise levels of higher complexity

the model had more consistent performance on pixel accu-

racy and IoU score.

In terms of the comparison between the autoencoders,

the refined autoencoder with skip connections is signifi-

cantly stronger against all the different noise levels com-

pared to the plain autoencoder and the traditional ap-
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SCAE(SSIM-MSE) STAE(SSIM-MSE) AE(MSE) SCAE(MSE) SCAE(SSIM) Bilateral Denoising Median Filtering

MSE 0.001609809 0.001590869 0.002378508 0.001650406 0.001912629 0.027107959 0.002277899

PSNR 28.88083292 29.01536878 26.85623264 28.64276771 28.2089766 25.35342745 28.1580106

SSIM 0.809236498 0.834861451 0.741865986 0.786420672 0.816084715 0.488412969 0.747806808

Pixel Accuracy∗ 0.614963399 0.679464035 0.529475664 0.570991854 0.611822439 0.545451794 0.5278731

IoU Score∗ 0.262517246 0.302267252 0.20174148 0.243014075 0.256787356 0.199243602 0.248135077

Table 2: Average metrics across the different noise levels for different models using the joined dataset (CS &

CL).∗Segmentation metrics evaluated on CL.

proaches. When evaluated using the traditional metrics it

manages to have 30% better mean square error and better

structure similarity by about 4.5% than the plain autoen-

coder as shown in Table 2. When evaluated using the per-

ception model metrics the difference in improvement re-

mains clear but not as significant. The same is observed

from visual results where the increase in mitigating perfor-

mance suggested by the pixel-wise metrics is not as sig-

nificant. The major visual improvements are in terms of the

retained structure, a result of the lower-level features passed

forward through the skip connections.

An important observation that solidifies our earlier in-

tuitions on the matter is that the perception engine’s eval-

uation trends are not analogous to the mitigation trends

of the pixel-wise metrics. In contrast, SSIM has a more

analogous relationship with the perception’s engines perfor-

mance. Thus, the choice of SSIM as a loss function seems

more appropriate in order to train an autoencoder which can

make the perception process more robust.

4.2.2 Impact of Loss Functions

It is also important to compare the effect of the loss func-

tions used for training on the subsequent performance. We

train the skip connection autoencoder with MSE loss func-

tion, SSIM loss function and a combination of the two. We

cannot deduce any inferences from the MSE, PSNR and

SSIM metrics due to their direct or indirect use in the train-

ing process. In both metrics used in the semantic segmenta-

tion evaluation however, we observe some trends. When the

image is clean the model trained under MSE loss retains the

image quality better whereas under low levels of noise the

two models perform similarly. As the noise attacks become

stronger the model trained using SSIM loss is more robust.

Interestingly, our intuitions followed in the design pro-

cess are justified since there is a clear trade-off between the

two loss functions. MSE is a pixel-wise metric, thus, can

learn to retain and mitigate smaller details than the regional

SSIM. However, as the attacks become stronger and the per-

turbations become regional they cannot be recovered using

pixel-wise information, where the SSIM is a more robust

approach. As shown from Fig. 3 a combination of the two

Loss functions is able to provide the benefits of both.

We observe the same trends by both metrics of the se-

Figure 3: Semantic segmentation metrics for different mod-

els/methods under different noise levels on the CL dataset.

Figure 4: Results on CS Dataset: The autoencoder manages

to remove the noise and utilize the temporal aspect to restore

the missing line and arrow on the road.

mantic segmentation as in the comparison of the MSE and

SSIM loss functions. Our approach on combining the two

loss functions is clearly effective as their combination pro-

vides in general, the best results among them in terms of

segmentation. The model trained under the combination of

the two loss functions outperforms the earlier versions in

retaining the image quality of clean images as well as mit-

igating noise in the case of low and medium levels of at-
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(a) left: Attacked, right: Restored

(b) left: Normal, center: Attacked, right: Restored

Figure 5: Semantic segmentation results on CS and CL data

on normal, attacked, and restored images. The autoencoder

manages to restore the semantic segmentation for important

objects.

tacks. In the case of high and extreme levels of attack it

performs similarly to the model trained using SSIM. Visu-

ally, the model is significantly more effective on retaining

the image quality of clean images as well as mitigating low

to medium levels of attacks than the previous versions.

4.2.3 Impact of Spatio-Temporal Information

Based on the results, it is evident that the sequence-based

spatio-temporal autoencoder outperforms the simpler mod-

els under every evaluation metric across all noise levels as

the average value over the noise levels is the highest. Inter-

estingly, the model outperforms in traditional metrics even

the models that used the equivalent metric as their loss-

function. In respect to the patch-level metric (SSIM), the

results prove that the model can appropriately align features

from sequences of frames and handles shifts in motion. The

effective accumulation of features from the different frames

is evident by the pixel-wise metrics (PSNR and MSE).

In terms of the perception engine evaluation, the spatio-

temporal autoencoder significantly outperforms the rest of

the autoencoders. The most interesting observation how-

ever is that the model manages to reach pixel accuracy

equivalent to the unguarded image when faced with a non-

attacked image, at 74.9%. Moreover, it keeps its perfor-

mance above 70% for attacks which are not extreme, and

above 60% when the noise is extreme, which appealingly is

the achievable performance of the plain autoencoder when

presented with a clean image. In terms of Intersection-

over-Union score, it faces minor loss in comparison with

a clean unguarded image, but manages to have a robust per-

formance under extreme attacks where it performs equiva-

lently to the SSIM trained model for clean images.

4.3. Qualitative Evaluation Results

As shown in the visual results in Fig. 5a the proposed

spatio-temporal approach manages to recover information

from the attacked image and restore the segmentation per-

formance. Interestingly even under mild noise artifacts the

segmentation map may be highly affected, whereas the ST-

AE manages to mitigate these adverse effects. As a result,

important elements such as other vehicles(Fig. 5b), pedes-

trians(Fig. 5b), and drive-able area(Fig. 5a) are correctly

identified. As shown in the visual results in Fig. 4, the

Spatio-Temporal autoencoder can also recover sections of

the image which were occluded by artifacts (e.g., blank re-

gions). On the other hand, even if all the spatial-only mod-

els were trained to counter such attacks, none was effective

on overcoming it. This validates our expectation that its

multi-frame input nature can accumulate features between

inputs to recover perturbations. The results are extremely

promising as they establish the model’s robustness against

attacks that involve selective occlusion of important features

in the frame such as road-lines. The model can uncover im-

portant features and localise them appropriately while at the

same time denoising the image effectively.

5. Conclusion

Future autonomous vehicles are heavily dependent on

computer vision and artificial intelligence techniques to per-

ceive their environment. To ensure robust and safe op-

eration these systems need to be safeguarded against at-

tacks (malicious or otherwise). To this end, this paper has

demonstrated DriveGuard as an approach for robustifying

semantic segmentation models, commonly employed in au-

tonomous vehicles, against various forms of image dete-

rioration attacks. In particular, through an exploration of

deep autoencoder architectures we have come up with a

lightweight spatio-temporal autoencoder that manages to

robustify semantic segmentation models.
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