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Abstract

Performance monitoring of object detection is crucial

for safety-critical applications such as autonomous vehi-

cles that operate under varying and complex environmental

conditions. Currently, object detectors are evaluated using

summary metrics based on a single dataset that is assumed

to be representative of all future deployment conditions. In

practice, this assumption does not hold, and the perfor-

mance fluctuates as a function of the deployment conditions.

To address this issue, we propose an introspection approach

to performance monitoring during deployment without the

need for ground truth data. We do so by predicting when the

per-frame mean average precision drops below a critical

threshold using the detector’s internal features. We quan-

titatively evaluate and demonstrate our method’s ability to

reduce risk by trading off making an incorrect decision by

raising the alarm and absenting from detection.

1. Introduction

Object detection is a crucial part of many safety-critical

applications such as robotics and autonomous systems. For

safe operation, an autonomous vehicle (AV), for example,

needs to accurately locate and identify critical objects like

other vehicles and pedestrians on the road. To achieve this

goal, there is ongoing research [37, 35, 25, 10, 1, 15, 3,

22, 23, 4] to improve the speed and accuracy of object de-

tection models. However, due to the discrepancy between

training data and deployment environments (i.e., dataset

shift [31]) and many other unavoidable factors like sensor

failure or degraded image quality, a consistent deployment

performance can not be guaranteed. Hence, object detection
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accuracy can fluctuate without any prior notification while

deployed on an autonomous vehicle. A silent failure like

this in the object detection model is a significant concern.

Due to this failure, the AV can cause catastrophic damage

if it operates based on erroneous object detection. Unde-

tected performance drops are a significant bottleneck for the

widespread deployment of autonomous vehicles in our ev-

eryday lives. Hence, for safety, robustness, and reliability,

the importance of performance monitoring of a deployed

object detection model is paramount.

The standard practice to prepare an object detection

model for deployment is to train and evaluate the model us-

ing training and evaluation split of some dataset to measure

the accuracy and generalization capacity. Here, the assump-

tion is the training and evaluation data are representative

of the real operating environment. However, this assump-

tion does not hold in the context of autonomous vehicles

where the operating environment is continuously evolving

and might change unexpectedly. Consequently, object de-

tection performance fluctuates without any prior notifica-

tion. Moreover, the performance might drop below any crit-

ical threshold, which can cause a fatal incident. See Fig-

ure 1 for an overview.

One possible solution is to develop an exceptionally ac-

curate and domain adaptive object detection system for au-

tonomous vehicles. However, it is impossible in most prac-

tical circumstances to account for all imaginable future de-

ployment conditions during training. Another approach is

to identify when the performance of the deployed object de-

tector drops below a critical threshold. So without the need

to increase the detection accuracy directly, a performance

drop identifier can protect the autonomous vehicle by pro-

viding crucial alerts during periods of silent failure. How-

ever, measuring the performance drop directly during de-

ployment is impractical due to the absence of ground-truth

data in this phase. Therefore, we advocate equipping object

detectors with self-assessment capability to detect instances

of performance drop during deployment.

There are several factors such as unknown environments,
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Figure 1: First row, an example of object detection performance fluctuation during the deployment, tracked using a sliding

window of ten frames. mAP is computed for the ten frames at a time. The dashed line represents a predefined critical

threshold. We can see that mAP drops below this threshold from time to time. The second row shows some samples from the

low mAP regions. Green and Cyan boxes represent false negative and false positive errors made by the object detector.

degraded input image quality and sensor failure that can de-

teriorate the performance of an object detector during the

deployment phase. Instead of identifying the reason behind

this performance drop, we are focusing on raising a warn-

ing when the drop happens. Besides, our assumption is the

object detection model weight is fixed, and the deployment

environment is previously unknown.

Self-assessment is becoming a prerequisite for any

vision-based efficient, safe, and robust robotic system. This

capability is often referred to as introspective perception

[7, 29]. For autonomous driving, an introspective object de-

tection system can hand over the control to human drivers

when it can predict inconsistency in its operation. There

are several works [13, 18, 32, 28] towards addressing the

requirement of providing self-assessment in a deep learning

based robotic vision system. However, there are very few

works towards introspective systems for object detection.

To this end, our paper makes the following contributions:

1. We propose an introspective approach to performance

monitoring of object detection during deployment

without access to ground truth labels.

2. We propose an internal integrated feature based on the

mean, max and statistics pooling techniques for perfor-

mance monitoring.

3. We introduce the use of per-frame mAP prediction for

continuous performance monitoring of object detec-

tors.

The rest of the paper is organized as follows: In Sec-

tion 2, we review the related works on introspective per-

ception systems. In Section 3, we introduce our framework

to find the performance drop for an object detection sys-

tem. Section 4 outlines our experimental setup. Section 5

presents the results and finally in Section 6 we conclude and

suggest areas for future work.

2. Related Work

In robotics, the idea of self-assessment was introduced

by [29] to achieve reliable performance in a real environ-

ment. They described this self-assessment as to the intro-

spection capability of a mobile robot while operating in an

unknown environment. Later [13] and [38] adopted the idea

of introspection for classification and semantic mapping re-

spectively in the context of robotics. These works examine

the output of the underlying system to predict the likelihood

of failure on any given input.

Another line of research is to predict the perception sys-

tem performance from the input itself. In this paradigm,

[20] introduced an evaluator algorithm to predict the fail-

ure of a human pose estimation model. Zhang et al. [42]

introduced the terminology basesys and alert in failure pre-

diction context. They proposed a general framework where

alert is used to raise a warning when the underlying sys-

tem basesys fails to make a correct decision from an input.

Daftry et al. [7] proposed an introspective framework to pre-

dict an image classifier model failure deployed on a micro

aerial vehicle. Following a similar methodology, [39] pro-

posed a model to predict how hard an image is for an under-

lying classifier. Using a probabilistic model, [14] predicted
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the probable performance of a robot’s perception system

based on past experience in the same location.

Recently, confidence estimation and Bayesian ap-

proaches for uncertainty estimation have gained popular-

ity to detect how well the underlying model has performed

on the input. TrustScore [21], Maximum Class Probability

[17] and True Class Probability [6] are some of the works

that measure the confidence of the underlying model for a

given task using the confidence estimation paradigm. Us-

ing a Bayesian approach, [11] proposed to use dropout as

a Bayesian approximation technique to represent model un-

certainty. Following their work, [9, 19] have used dropout

sampling to identify the quality of image and video segmen-

tation network. Here, all of these works focus on predicting

model failure using different approaches for classification

and segmentation tasks.

In the context of object detection, [27, 5] have used sev-

eral approaches to identify the failure of an object detection

system. Both of these works are suitable to identify false

positive errors made by an object detector. Whereas, [33]

and [34] have proposed different procedures to detect false

negative errors made by an object detection model. Our

proposed approach differs from these methods and focuses

on addressing the issue of predicting low per-frame mAP,

which covers both false positive and false negative errors as

well as poor object localization.

Another line of research focus to propose various sum-

mary metrics other than mAP to evaluate object detection

performance. nuScenes detection score [2], delay metric

[26] and planner-centric metric [30] are some recent works

of this paradigm. These works rely on the ground-truth data

to evaluate the object detection performance, whereas our

work does not require the ground-truth to predict the per-

formance drop during the deployment phase.

3. Approach Overview

In this section, we describe our proposed framework to

predict the performance drop of an object detection system

during deployment without using any ground-truth data. We

assume that the deployed object detection model weight re-

mains frozen during this phase. First of all, we will define

the problem.

Assuming we have an object detector O with backbone

deep neural network B, O is trained to detect a set of ob-

jects T from a training dataset, Dt. We also have an eval-

uation dataset De, similarly distributed as Dt. De contains

a set of images I = {I1, I2 . . . In} and corresponding an-

notations L = {L1, L2 . . . Ln} per image. After the object

detection training phase, O is applied on De to detect all the

objects from T . Thus, we get a set of predictions per image,

P = {P1, P2 . . . Pn}. Using the pairs of annotations and

predictions per image (Li, Pi), we compute the per-frame

mAP, M = {M1,M2 . . .Mn} following the procedure at

[24]. Here, per-frame mAP quantifies O’s performance to

detect all the existing objects in each image.

We assign each image of De into success and failure

classes using the Equation 1. Here λ is chosen to be the kth

percentile of M . The failure class contains the k% image

frames from the De where O was not accurate enough to

detect the available objects. The choice of k here is applica-

tion specific. We want to train the introspective perception

system alert to predict the images similar to the failure class

where per-frame mAP will be lower than λ.

L(I) =

{

failure, mAPper-frame < λ

success, otherwise.
(1)

To train the alert we use features F = {F1, F2 . . . Fn} for

each image from De. Following the failure prediction net-

work proposed by [39] and [6], the final convolutional layer

of backbone B is used to extract all the necessary features.

Assuming that, there are N channels at the last layer of B

and each activation map is of size W ×H , we apply Equa-

tion 2 on the last layer to extract the mean pooling feature

Fmean. Here, f(x, y) represents the spatial unit of each ac-

tivation map.

Fmean =

∑H

x=1

∑W

y=1 f(x, y)

W ·H
· (2)

Applying Equation 3 on the last layer of B, we generate the

max pooling feature Fmax,

Fmax = max
x∈[1,H]

max
y∈[1,W ]

f(x, y). (3)

Inspired by [36], we calculate the standard deviation from

each activation map to generate the statistics pooling feature

Fstd following the Equation 4. Here std(fi) calculates the

standard deviation of ith feature map.

Fstd = std(f1)⊕ std(f2)⊕ . . . std(fN ). (4)

All the features described above are concatenated together

to generate the feature Fmean max std for the alert system.

Equation 5 formulates this process.

Fmean max std = Fmean ⊕ Fmax ⊕ Fstd. (5)

We train a binary classifier using the Fmean max std fea-

ture and the corresponding labels from Equation 5 and

Equation 1 respectively. The classifier is trained to predict

the probability of an image feature to be in the failure class.

Following [42], we will refer to the object detection model

and its corresponding binary classifier as basesys and alert

respectively. Figure 2 shows the incorporation between the

basesys and alert system.
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Figure 2: The architecture of our proposed basesys and alert

system together. The last convolutional feature of the back-

bone is pooled using the mean, max and statistical pooling

layer to generate the feature for alert. Alert consists of a

binary classifier that predicts the performance drop of the

basesys.

4. Experimental Setup

In this section we will describe the settings that we have

used to train the basesys and alert system.

Datasets: We used all images from kitti [12] dataset and

one frame per video from bdd [40] dataset to train both

basesys and corresponding alert system. Randomly se-

lected 60%, 20% and 20% images from both dataset have

been used for basesys training, evaluation and testing pur-

poses. As person and car classes are available in both of

these dataset, we used these two objects as basesys target

class. After the object detection training, basesys is used to

detect person and car from the 20% evaluation split. Based

on basesys performance on the evaluation split, we collect

image features and labels for the alert system following the

procedure described in Section 3. Thus the features and la-

bels collected from basesys evaluation split works as a train-

ing dataset for the corresponding alert system. To test the

alert, we first apply basesys on the testing split and measure

its per-frame performance drop, which works as the testing

data for the alert system. In some of our experiments, we

will train and test basesys and alert using training and test-

ing split of a single dataset. We will refer to these settings

as similar dataset. In the rest of the experiments, basesys

and alert will be trained using a training split of one dataset

and tested using a testing split of another dataset. These

arrangements will be referred to as cross dataset settings.

Basesys Training: We have used Faster RCNN object de-

tection network [35] as the basesys in all of our experi-

ments. Basesys has been trained using transfer learning

to detect person and car objects from both kitti and bdd

dataset. Two different versions of Residual Neural Net-

work [16], ResNet18 and ResNet50 have been used as

the basesys backbone. In our experiments, the basesys,

trained using RestNet50 backbone has performed better

than the ResNet18 backbone. Table 1 shows compara-

tive performance using the mean average precision (mAP)

for all different basesys and dataset combinations. We

used ResNet18 and ResNet50 to demonstrate how well the

proposed alert system performs for weaker and stronger

basesys respectively.

Feature Collection: We experimented with multiple fea-

tures to find the most suitable one for the proposed alert

system. The first set of features are collected from basesys

bounding box proposals.

• mean conf score: This feature exploits object proposal

confidence score to determine basesys performance

drop. As basesys proposes multiple bounding boxes

with corresponding confidence scores and labels dur-

ing object detection, we use the mean of confidence

scores which are greater than 0.5 to build the first fea-

ture. Here, a lower mean confidence score indicates a

potential performance drop in the basesys.

• n proposals: We assume that a crowded environment

might be a factor for basesys performance drop. To

evaluate this assumption, we used the number of pro-

posals having a confidence score greater than 0.5 as a

performance drop indicator.

The second set of features are collected from two external

deep convolutional neural networks.

• classifier: Two different versions of Residual neural

network, Resnet18 and ResNet50 have been used to

extract image features to train the alert system. Both

of these networks are pre-trained on ImageNet [8]

dataset.

Table 1: Basesys mean average precision (mAP) using

ResNet18 and ResNet50 backbone. Here basesys is trained

and tested using similar dataset and cross dataset settings.

Basesys accuracy drops when trained and tested on different

dataset.

ResNet18 ResNet50

training

dataset

testing

dataset
mAP

training

dataset

testing

dataset
mAP

kitti kitti 0.292 kitti kitti 0.377

kitti bdd 0.130 kitti bdd 0.182

bdd kitti 0.200 bdd kitti 0.259

bdd bdd 0.331 bdd bdd 0.499
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Figure 3: Risk-Averse Metric for the proposed alert system.

(a) Point per image earned by basesys with and without con-

sidering alert warning when trained and tested on similar

dataset. (b) Point per image for basesys with and without

alert system when trained and tested on different dataset.

In both cases, basesys earns more points per image when

associated with alert.

• places365: We used ResNet18 and ResNet50 network

pre-trained on Places365 dataset to extract features to

train the alert system.

In both cases, average pooling has been used at the

final convolutional layer to extract the necessary image

features.

We use the basesys backbone to extract the third set of fea-

tures. These will be referred to as the internal features.

• layer: We applied the mean-pooling operation in all of

the convolutional layers of the backbone and concate-

nated them to create this feature.

• mean, max and std: Applying the mean, max and

statistics pooling technique described in Section 3 at

the last convolutional layer of basesys backbone, we

extracted the mean, max and std features.

• mean std and mean max: Using the concatenation op-

eration and following the feature generation technique

proposed in [36] and [41], we generate two new fea-

tures mean std and mean max using the mean, max

and std feature.

• mean max std: This feature is generated by applying

the Equation 5 at the last convolutional layer of basesys

backbone.

Alert Training: We used a multi layer fully connected bi-

nary classifier with 50% dropout rate to train all the alert

systems. Besides, we used binary cross entropy loss with

balanced sampling to train the alert network.

kitti/kitti/18 kitti/kitti/50 bdd/bdd/18 bdd/bdd/50
A/B/C: Trained on A, tested on B, using backbone C
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Figure 4: mAP vs declaration rate metric for the proposed

alert system. We used four different declaration rates to cal-

culate the corresponding mAP metric. An increasing dec-

laration rate shows a gradual drop in the mean average pre-

cision. (a) shows the mAP vs DR metric for the similar

dataset settings (b) mAP vs DR metric for cross dataset set-

tings.

5. Evaluation and Results

5.1. AUPRC and AUROC Metrics

This section summarizes the alert accuracy using Area

Under the Precision Recall Curve (AUPRC) and Area Un-

der the ROC Curve (AUROC) metric. Here, we will refer

to all our experimental settings using the notation A/B/C.

It means the basesys and alert are trained on dataset A us-

ing backbone C and alert is used to identify basesys perfor-

mance drop on dataset B. Here C can be 18 or 50, resem-

bling the ResNet18 and ResNet50 backbone for the basesys.

Table 2 summarizes the alert accuracy for similar dataset

settings. Our proposed mean max std feature achieves

0.781 and 0.902 as AUPRC and AUROC score, and out-

performs all other features in the case of kitti/kitti/18. For

kitti/kitti/50, bdd/bdd/18 and bdd/bdd/50 experimental set-

tings, features collected from the basesys performs better

than all other features in terms of AUPRC and AUROC

score.

The proposed alert system is beneficial for cross dataset

settings too. Table 3 shows the AUPRC and AUROC

scores for alert when it is used to identify basesys perfor-

mance when deployed on an unknown environment. For

bdd/kitti/18 settings, alert achieves 0.790 and 0.696 as

AUPRC and AUROC score respectively when used with the

mean max std feature. In all cross dataset experimental set-

tings, mean max std features outperforms all other features

for identifying basesys performance drop.

5.2. True Warning Rate

Using the best performing feature, mean max std, we

use the true warning rate metric to determine the quality of

the alert system in raising a warning against basesys perfor-

mance drop. Here, the warning rate is the ratio of correctly

raised warning vs the total number of frames with per-frame
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Table 2: Area Under the Precision Recall Curve (AUPRC) and Area Under the ROC Curve (AUROC) score for alert system

in the similar dataset settings. Here alert is used to identify basesys performance drop in a known environment. The

notation A/B/C denotes that basesys and alert is trained on dataset A using backbone C and alert is used to identify basesys

performance drop on datasetB.

kitti/kitti/18 kitti/kitti/50 bdd/bdd/18 bdd/bdd/50

Feature AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

n proposals 0.180 0.128 0.186 0.110 0.205 0.368 0.197 0.363

mean conf score 0.205 0.320 0.192 0.358 0.452 0.653 0.463 0.665

classifier 0.728 0.851 0.689 0.831 0.498 0.744 0.488 0.734

places365 0.654 0.799 0.670 0.823 0.516 0.753 0.507 0.744

layer 0.760 0.890 0.480 0.764 0.622 0.814 0.587 0.798

mean 0.738 0.876 0.602 0.822 0.587 0.800 0.549 0.777

max 0.756 0.887 0.673 0.819 0.621 0.811 0.587 0.790

mean std 0.747 0.879 0.689 0.855 0.609 0.815 0.577 0.791

mean max 0.777 0.898 0.708 0.841 0.627 0.818 0.587 0.793

mean max std 0.781 0.902 0.712 0.846 0.633 0.820 0.595 0.795

Table 3: Area Under the Precision Recall Curve (AUPRC) and Area Under the ROC Curve (AUROC) for alert in the cross

dataset settings. Here alert is identifying basesys performance drop in an unknown environment. The notation A/B/C denotes

that basesys and alert is trained on dataset A using backbone C and alert is used to identify basesys performance drop on

dataset B.

bdd/kitti/18 bdd/kitti/50 kitti/bdd/18 kitti/bdd/50

Feature AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

n proposals 0.558 0.381 0.736 0.447 0.531 0.465 0.538 0.497

mean conf score 0.641 0.507 0.786 0.566 0.675 0.623 0.730 0.710

classifier 0.783 0.629 0.818 0.483 0.672 0.663 0.557 0.578

places365 0.781 0.624 0.821 0.493 0.857 0.837 0.630 0.637

layer 0.780 0.684 0.815 0.580 0.868 0.836 0.662 0.670

mean 0.754 0.665 0.809 0.563 0.858 0.831 0.733 0.753

max 0.778 0.682 0.813 0.582 0.647 0.605 0.661 0.686

mean std 0.759 0.672 0.815 0.569 0.855 0.823 0.751 0.768

mean max 0.786 0.692 0.822 0.586 0.826 0.786 0.701 0.726

mean max std 0.790 0.696 0.822 0.587 0.883 0.856 0.833 0.825

mAP below the critical threshold. Table 4 shows the true

warning rate raised by the alert system.

The results in Table 4 show that in cross dataset settings

the true warning rate is higher than the similar dataset set-

tings. As basesys accuracy drops in cross dataset settings

Table 4: The true warning rate of the alert system to identify

basesys performance drop.

ResNet18 ResNet50

training

dataset

testing

dataset
mAP

training

dataset

testing

dataset
mAP

kitti kitti 59.1% kitti kitti 66.0%

kitti bdd 81.8% kitti bdd 78.7%

bdd kitti 79.3% bdd kitti 81.4%

bdd bdd 55.4% bdd bdd 52.4%

(Table 1), alert becomes more useful in these cases by iden-

tifying the critical cases. When the detector with ResNet50

backbone is trained on BDD and tested on Kitti, alert can

identify 81.4% of the frames where basesys per-frame mAP

is lower than the critical threshold. Figure 5 displays mul-

tiple samples of alert raising the alarm and flagging frames

where basesys performance drops below a critical thresh-

old of 0.5. The frames show conditions such as night, rain,

cluttered environments.

5.3. RiskAverse Metric

In Risk-Averse Metric (RAM) [42], we evaluate alert’s

capability to trade-off the risk of making an incorrect deci-

sion without making a decision at all. RAM gives basesys

+1.0 and −0.5 respectively for a correct and incorrect pre-

diction. basesys will get 0 point if it does not make any de-

cision considering the warning raised by alert. For crucial
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0.76 0.87 0.70

0.79 0.75 0.76

0.77 0.77 0.82

0.99 0.960.85

Figure 5: Examples of alert prediction to identify basesys performance drop. Here the Green and Cyan bounding boxes show

the false negative and false positive errors respectively made by an object detector. Alert prediction is shown at the upper

right corner of each image. The first row shows samples from the kitti/kitti/50 experimental settings. The second, third and

fourth row show samples from the bdd/bdd/18, kitti/bdd/18 and bdd/kitti/50 experiments.

systems like self-driving car’s object detection, we expect

basesys to trade-off incorrect decision for no decision. In

such case, basesys can handover its control to some more

competent systems. Figure 3a shows the point per image

earned by basesys when it operates with and without con-

sidering the warning raised by alert in similar dataset set-

tings. In all cases, basesys earns more points per image if

it abstains from making an incorrect decision taking alert’s

warning in consideration. Figure 3b shows the RAM metric

for cross dataset settings. These experiments show that the

warning raised by alert is crucial to mitigate the incorrect

detection made by an object detector.

5.4. mAP vs Declaration Rate Metric

In this section we evaluate the basesys accuracy score

for different declaration rates (DR) [42]. This metric shows

the correlation between alert confidence and basesys per-

formance. Here, the declaration rate is the proportion of

images on which basesys operates. The rest of the images

are discarded assuming that basesys per-frame mAP will be

lower than the critical threshold on those images. To cal-

culate this metric, we first sort the images in the ascending

order of alert confidence. Next, the mAP of the top DR per-

centage of images is computed to plot the mAP vs DR met-

ric. For a perfect alert the mAP for low DR images would

be very high and decrease gracefully as DR approaches to

1.0. In Figure 4a we show the mAP score for four differ-

ent declaration rates in similar dataset settings. The mAP

score drops gradually with the increasing declaration rate.

Figure 4b shows the mAP vs DR metric for cross dataset

settings. In both cases, we use mean max std features in

alert to identify basesys performance drop.

6. Conclusion

Deep learning-based object detection is a critical com-

ponent of a wide variety of robotic applications, from au-

tonomous vehicle to warehouse automation due to its ac-

curacy and efficiency. However, its performance is a func-

tion of the deployment conditions and could drop below a

critical threshold leading to increased risk. Although there

is always room to improve accuracy and speed, safety is

still a significant concern that should not be overlooked. To

this end, we presented an introspection approach to perfor-

mance monitoring of deep learning based object detection.

We showed that our approach can improve safety by rais-
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ing an alarm when per-frame mean average precision is de-

tected to drop below a critical. We also showed that inter-

nal features from the detector itself could be used to predict

when per-frame mAP degrade. Our results showed quanti-

tatively the ability of our method to reduce risk by trading

off making an incorrect detection with raising the alarm and

absenting from detection.
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