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Computer Vision Center, UAB∗, Facebook†

{iruiz,joans}@cvc.uab.es∗ {porzi,rotabulo,pkontschieder}@fb.com†

Abstract

We introduce the problem of weakly supervised Multi-

Object Tracking and Segmentation, i.e. joint weakly su-

pervised instance segmentation and multi-object tracking,

in which we do not provide any kind of mask annotation.

To address it, we design a novel synergistic training strat-

egy by taking advantage of multi-task learning, i.e. classi-

fication and tracking tasks guide the training of the unsu-

pervised instance segmentation. For that purpose, we ex-

tract weak foreground localization information, provided by

Grad-CAM heatmaps, to generate a partial ground truth to

learn from. Additionally, RGB image level information is

employed to refine the mask prediction at the edges of the

objects. We evaluate our method on KITTI MOTS, the most

representative benchmark for this task, reducing the perfor-

mance gap on the MOTSP metric between the fully super-

vised and weakly supervised approach to just 12% and 12.7

% for cars and pedestrians, respectively.

1. Introduction

Computer vision based applications often involve solv-

ing many tasks simultaneously. For instance, in a real-life

autonomous driving system, tasks regarding perception and

scene understanding comprise the problems of detection,

tracking, semantic segmentation, etc. In the literature, how-

ever, these are usually approached as independent problems.

This is the case of multi-object tracking and instance seg-

mentation, which are usually evaluated as disjoint tasks on

separate benchmarks. The problem of Multi-Object Track-

ing and Segmentation (MOTS) was recently defined in [22].

As an extension of the Multi-Object Tracking problem to

also comprise instance segmentation, it consists in detect-

ing, classifying, tracking and predicting pixel-wise masks

for the object instances present along a video sequence.

Due to the lack of suitable datasets, the first two MOTS

benchmarks were introduced in [22] in order to assess their

model, which were annotated manually. The annotation

procedure involves providing bounding boxes and accurate

pixel-level segmentation masks for each object instance of
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t
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Figure 1. Output of our weakly supervised approach on KITTI

MOTS. Different colors represent the different identities.

predefined classes, plus an unique identity instance tag, con-

sistent along the video sequence. Moreover, this needs to

be done on a significant amount of data to effectively train

a MOTS model. This results in a high annotation cost and

makes infeasible to perform it manually. This issue can be

mitigated by investigating approaches that do not require all

this data to solve the MOTS task. In this work, we address

this unexplored line of research.

We define the weakly supervised MOTS problem as the

combination of weakly supervised instance segmentation

and multi-object tracking. It aims at detecting, classifying,

tracking and generating pixel-wise accurate masks, without

providing any kind of instance segmentation annotation, the

most expensive annotation type of MOTS datasets. We pro-

pose an approach that solves this task by using only detec-

tion and tracking annotations: bounding boxes along with

their corresponding classes and identities. By taking advan-

tage of multi-task learning, we design a synergistic train-

ing scheme where the supervised tasks support the unsuper-

vised one. We are able to solve the instance segmentation

task by relying on the learning of the parallel supervised

tasks (see Fig. 1 for an output example). Specifically, we
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provide weak supervision from the classification and track-

ing tasks, along with RGB image level information. The

learning of the instance segmentation task solely depends

on this novel supervision. The proposed weak supervision

consists of three losses that integrate: localization informa-

tion via activation heatmaps extracted from the classifica-

tion task, tracking information and RGB image level infor-

mation, to refine the prediction at the objects boundaries. To

the best of our knowledge, this is the first work that solves

the MOTS problem under a weakly supervised setting.

Our main contributions are the following:

• We define the weakly supervised MOTS problem as

joint weakly supervised instance segmentation and

multi-object tracking. This is the first work that, to

the best of our knowledge, considers this variant of the

MOTS problem and solves it not using any kind of in-

stance segmentation annotations.

• We design a novel training strategy to address weakly

supervised MOTS. The different branches of our ar-

chitecture, MaskR-CNN based, act synergistically to

supervise the instance segmentation task, i.e. classifi-

cation and tracking actively help segmentation.

• We compare our method to the fully supervised base-

line on the KITTI MOTS dataset, showing that the

drop of performance, on the MOTSP metric is just 12%

and 12.7% for cars and pedestrians, respectively.

• Finally, we provide an ablation study about the contri-

bution of the components of our approach.

2. Related Works

2.1. MultiObject Tracking and Segmentation

The MOTS problem was introduced in [22]. The so-

lution proposed by the authors consists in a MaskR-CNN

based architecture that comprises an additional tracking

branch that learns an embedding, later used to match the

object instances along the frame sequence. Despite it is

a recently introduced topic, there already exist works re-

lated to the MOTS problem on a fully-supervised setting.

In [7], instead of joining the problems of instance segmen-

tation and tracking, they solve jointly panoptic segmenta-

tion and tracking. A similar idea to our work, in the sense

of using multi-object tracking to help other tasks, is pre-

sented in [13]. On their approach, MOTSFusion, tracking

helps 3D reconstruction and vice-versa. Very recently, a

new framework has been proposed in [23] along with a new

MOTS dataset, APOLLO MOTS. Differently from the pre-

vious works, the instance segmentation task is not solved

in a two stage manner from the bounding box predictions.

Instead, they use the SpatialEmbedding method, which is

bounding box independent and faster. An extension is done

in [24].

There are no previous works addressing weakly super-

vised settings of the MOTS problem. However, stress-

ing the importance of the need of annotations for MOTS,

an automatic annotation procedure for MOTS benchmarks

was proposed in [16], where the authors also presented a

similar architecture to [22]. As the result of their auto-

matic annotation pipeline, they obtain instance segmenta-

tion masks and tracking annotations. However, the masks

are obtained from a network that is previously trained using

instance segmentation masks from a different benchmark,

with a domain gap presumably small with respect to the tar-

get dataset. Our model instead, is trained with no previous

knowledge of how a mask ”looks like”.

2.2. Weakly Supervised Segmentation

The literature in the field of semantic segmentation is ex-

tensive and there exist many works that address the weakly

supervised setting. A widely used strategy is to predict an

initial weak estimate of the mask, that is then refined by

using extra information extracted from the image, e.g. us-

ing Conditional Random Fields (CRF) as a post-processing

step is a common approach to get precise boundaries of the

objects.

Some works that follow such strategy are [17, 8], which

employ a dense CRF [9] to improve their mask prediction.

In [8], the authors propose to minimize the KL divergence

between the outputs of the network and the outputs of the

CRF, while in [17], they smooth their initial mask approxi-

mation by using the CRF. They then minimize a loss that

computes the difference between the network prediction

and the CRF output. Both of them use activations of the net-

work as an initial mask estimation. More recently, [19] em-

ploys CRF post-processing to refine initial rectangle-shaped

proposals, that are later used to compute the mean filling

rates of each class. With their proposed filling rate guided

loss, they rank the values of the score map, then selecting

the most confident locations for back propagation and ig-

noring the weak ones.

The mean-field inference of the CRF model [9] was later

formulated in [27] as a Recurrent Neural Network, which

allows to integrate it as a part of a CNN, and train it end-

to-end. This formulation is used in the architecture from

[2, 11]. In [2], it is used to refine the initial semantic

segmentation and the final instance segmentation predic-

tions. A weakly supervised panoptic segmentation method

is proposed in [11]. Two outputs are proposed as the initial

masks. If bounding box annotations are available, they use a

classical foreground segmentation method. Otherwise, the

approximate masks are localization heatmaps from multi-

class classification [18], similarly to us. However, their

classification network is previously trained and only used to
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Figure 2. Overview of our architecture. We modify MOTSNet [16] by adding 1×1 convolutional layers on the classification and detection

branch to extract localization information via Grad-CAM [18] heatmaps. We show in purple the losses, Lloc, LCRF and LT , that supervise

the instance segmentation task in the weakly supervised setting.

extract the heatmaps. We instead, train all the classification,

detection, instance segmentation and tracking tasks simulta-

neously. Also, we do not have an independent classification

network dedicated to extract the heatmaps, it is part of the

main architecture. Another advantage of our method is that

it extracts the heatmap individually for each ROI proposal,

instead of doing it for the whole image.

Differently from the previous methods, the work of [21],

that considers the problem of training from partial ground

truth, integrates the CRF regularizer into the loss function,

then avoiding extra CRF inference steps. Their weakly-

supervised segmentation loss function is composed by a

ground truth plus a regularization term. They propose and

evaluate several regularization losses, based on Potts/CRF,

normalized cut and KernelCut regularizers.

2.3. Video Object Segmentation

Video Object Segmentation (VOS) is a problem related

to ours, as it also comprises tracking and segmentation. In

VOS, all the salient objects that appear in the sequence

must be segmented and tracked, regardless of their category.

Salient objects are those that catch and maintain the gaze of

a viewer across the video sequence. Differently, in MOTS,

we only track and segment objects that belong to specific

classes of interest, therefore needing a classification model.

Some recent works in the field of VOS are [5, 20, 26]. If

we add classification to VOS, then distinguishing object

instances, it becomes Video Instance Segmentation (VIS)

[25, 4, 12]. The datasets designed to assess this task do not

usually present strong multi-object interaction, then lacking

hard scenarios with occlusions and objects that disappear

and enter again to the scene, as it is characteristic of MOTS

benchmarks.

There exist semi and unsupervised approaches of the

VOS problem. In the semi-supervised setting the masks of

the objects to be tracked are given in the first frame. Only

these objects need to be tracked and segmented throughout

the rest of the video. The unsupervised approach, however,

consists in detecting all the possible objects in the video

and track and segment them throughout the whole sequence.

The work of [14] addresses the unsupervised VOS problem

with a MaskR-CNN based architecture, trained on COCO.

They do the inference for the 80 classes of COCO, using

for mask prediction a very low (0.1) confidence threshold,

then merging the mask predicted for all the categories, tak-

ing the most confident one when there is overlapping. This

method was extended to VIS by just adding classification,

also provided by Mask R-CNN.

3. Method

We build upon the MOTSNet architecture proposed in

[16]. We add two 1×1 convolutional layers at the classi-

fication and detection branch of the Region Segmentation

Head, aimed at Grad-CAM [18] computation for the ROI

proposals, as described in section 3.1. This is needed to ex-

tract activation information, as the original branch does not

include any convolutional layer. The complete architecture

is shown in Fig. 2.

First, we describe the general fully supervised setting to

finally introduce our weakly supervised approach. To train

the model under a fully supervised setting, we employ the

loss function defined in [16], with minor differences in the

tracking loss, described below. The loss function L is then
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defined as

L = LT + λ(LRPH + LRSH) , (1)

where LT , LRPH and LRSH denote the Tracking, Region

Proposal Head and Region Segmentation Head losses, re-

spectively. We refer the reader to [15] for a detailed de-

scription of the two latter.

Tracking. MOTSNet is based on MaskR-CNN but com-

prises a new Tracking Head (TH) that learns an embed-

ding at training time and predicts class specific embedding

vectors for each proposal. The TH first applies the mask-

pooling [16] operation on the input features, thereby only

considering the foreground of the proposal to compute its

embedding vector. This embedding is trained by minimiz-

ing a hard-triplet loss [6], so that instances of the same ob-

ject are pushed together in the embedding space, while in-

stances of different objects are pushed away. The distance

in the embedding space is then used at inference time to as-

sociate the proposals and build the tracks. We define the

distance as the Cosine distance d(v, w) = v·w
‖v‖‖w‖ between

two embedding vectors v and w.

Then, the tracking loss LT is defined as

LT =
1

|R̆|

∑

r̆∈R̆

max

(
max

r̂∈R̆|idr̂=idr̆

d(ar̂, ar̆)−

min
r̂∈R̆|idr̂ 6=idr̆

d(ar̂,ar̆) + α, 0

)
, (2)

where R̆ denotes the set of positive matched region pro-

posals in the batch. The positive proposals are those that

match a bounding box from the ground truth with an IoU

> 0.5. ar̆ and idr̆ stand for the corresponding embedding

vector and assigned identity from the ground truth track, of

the proposal r̆ ∈ R̆. α is the margin parameter of the hard

triplet loss.

At inference time, the tracking association is performed

as follows. To link positive proposals from consecutive

frames, we first discard those whose detection confidence is

lower than a threshold. We then compute a similarity func-

tion for each pair of objects. We consider the pairs between

the current frame objects and the objects present in the pre-

vious frames comprised in a temporal window whose length

is previously decided.

The similarity function Sim(r̆, r̂) of two proposals r̆ and

r̂ takes into account the embedding distance and the bound-

ing box overlapping as

Sim(r̆, r̂) = IoU(br̆, br̂)d(ar̆, ar̂) , (3)

where br̆, br̂ are the predicted bounding boxes associated to

r̆ and r̂, respectively. From this similarity, we define a cost

Cost(r̆, r̂) =

[
max
r̆,r̂∈R̆

Sim(r̆, r̂)

]
− Sim(r̆, r̂) . (4)

Finally, the matching is solved by using the Hungarian

algorithm.

3.1. Weakly supervised approach

The loss function that trains the model under a fully su-

pervised setting is defined in Eq. 1, where LRSH is

LRSH = Lcls
RSH + Lbb

RSH + Lmsk
RSH , (5)

Lcls
RSH , Lbb

RSH and Lmsk
RSH stand for the classification,

bounding box regression and mask segmentation losses of

the Region Segmentation Head. In the fully supervised

case, Lmsk
RSH corresponds to a cross-entropy loss that com-

pares the instance segmentation ground truth to the pre-

dicted masks.

In our weakly supervised setting, we do not have any in-

stance segmentation ground truth available. To train the in-

stance segmentation task, we propose a new approach that

benefits from the multi-task design of the MaskR-CNN base

architecture, i.e. it has a common backbone followed by

task-specific heads. We exploit this architecture so that the

different branches of MOTSNet act in a synergistic manner,

guiding the unsupervised task. In particular, we propose a

new definition of Lmsk
RSH ,

Lmsk
RSH = Lloc + λCRFLCRF , (6)

where Lloc and LCRF stand for the Foreground localization

and CRF losses, respectively and λCRF is a regularization

parameter.

Foreground localization loss Lloc. To provide informa-

tion to the network about where the foreground is, we use

a localization mechanism. In particular, we propose Grad-

CAM [18], i.e. weak localization heatmaps obtained from

the activations and gradients that flow trough the last convo-

lutional layer of a classification network, when it classifies

the input as a certain class. Since our architecture naturally

comprises a classification branch, we take advantage of that,

using the MOTSNet classification branch to compute Grad-

CAM heatmaps. As explained in section 3, we add two

1×1 convolutional layers to the classification and detection

branch, before the fully connected layers. The Grad-CAM

heatmaps are computed then on the second added convolu-

tional layer by using the implementation variant discussed

in section 3.2.

Let R be the set of bounding boxes from the ground

truth. For every bounding box r ∈ R, we compute the

Grad-CAM heatmap Gr corresponding to that ground truth

region, for its associated class. We normalize it so that

Gr ∈ [0, 1]28×28. The heatmaps Gr are intended to produce
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Figure 3. Pairs of Grad-CAM heatmaps used as a cue and the corresponding predicted masks.

mask pseudo labels to learn from. For a region proposal r̆,

its corresponding pseudo label Y r̆ ∈ {0, 1, ∅}28×28 is a bi-

nary mask generated from the heatmaps, where ∅ denotes

a void pixel that does not contribute to the loss. The as-

signment of the pseudo label Y r̆
ij to the cell (i, j) is defined

as

Y r̆
ij =





0 ∀ ij /∈ Pr ∀r ∈ R

1 if Gr
ij ≥ µA ∀ ij ∈ Pr

∅ if Gr
ij < µA ∀ ij ∈ Pr ,

(7)

where Pr is the set of pixels that belong to the area de-

fined by the ground truth bounding box r. We consider as

foreground the pixels of the ground truth bounding boxes

whose Grad-CAM value Gr is above a certain threshold µA

and background all the pixels outside the bounding boxes.

We ignore those pixels that are inside the bounding boxes

but below the threshold. Then, the foreground localization

loss Lloc is a cross entropy loss, defined for a proposal r̆ as

Lloc(Y
r̆, S r̆) = −

1

|P r̆
Y |

∑

(i,j)∈P r̆
Y

Y r̆
ij logS

r̆
ij

−
1

|P r̆
Y |

∑

(i,j)∈P r̆
Y

(1− Y r̆
ij)log(1− S r̆

ij) , (8)

where S r̆ ∈ [0, 1]28×28 denotes the mask prediction for the

proposal r̆ for its predicted class, whose entries S r̆
ij are the

probability of cell (i, j) to belong to the predicted class.

P r̆
Y ⊂ P r̆ denotes the set of all the non-void pixels in the

28×28 pseudo label mask Y r̆, letting P r̆ be the set of all the

pixels in Y r̆. The loss values of all the positive proposals

(those with a bounding box IoU > 0.5) are averaged by the

number of proposals to compute the loss.

CRF Loss LCRF . We use the loss proposed in [21] to

improve the instance segmentation prediction on the ob-

ject boundaries. This loss integrates CRF regularizers, that

can act over a partial input, improving the quality of the

predicted mask, then avoiding additional CRF inference

steps, as many weakly supervised segmentation methods do

[2, 11, 17, 8]. The CRF loss LCRF is a regularization loss,

result of applying a relaxation of the Potts/CRF model. Ac-

cording to [21], it can be approximated as

LCRF (S
r̆) =

∑

k

S r̆k′

W (1− S r̆k) , (9)

where W represents an affinity matrix, i.e. the matrix of

pairwise discontinuity costs, k denotes the class and S r̆k ∈
[0, 1]128×128 is the predicted mask for that class, resized

from 28×28 to 128×128 in order to extract quality infor-

mation from the RGB image. Following the implementation

of [21], we consider a dense Gaussian kernel over RGBXY,

then W is a relaxation of DenseCRF [10] and the gradient

computation becomes standard Bilateral filtering that can

be implemented by using fast methods such as [1]. Simi-

larly as with the Lloc loss, we average the losses for all the

positive proposals.

Tracking loss LT . As described before, the TH first applies

the mask pooling operation, i.e. the embedding vector pre-

dicted by the TH only considers the foreground according to

the predicted mask. The tracking loss is then also indirectly

supervising the instance segmentation branch.

In summary, the training of the instance segmentation

branch is guided by the linear combination of these losses.

The algorithm overview is depicted in Fig. 2. The RGB

image is used along with the mask prediction to compute

LCRF , while the ground truth bounding boxes are used to

compute Grad-CAM heatmaps that produce pseudo labels

to learn from, via a cross-entropy loss applied on the mask

prediction. Finally, the TH employs the mask prediction to

produce embedding vectors, then indirectly supervising the

instance segmentation task. The effect of the combination

of the aforementioned losses is shown on Fig. 3, where

we show the initial Grad-CAM heatmaps that are used to

produce pseudo labels and the final predicted mask by the

weakly supervised mask branch.
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3.2. GradCAM analysis

In the original implementation of [18], the Grad-CAM

heatmap Gc ∈ R
28x28 for a certain class c is computed as

Gc = ReLU

(∑

k

αc
kA

k

)
, (10)

where the importance weights αc
k are defined as the global-

average-pooled gradients ∂yc

∂Ak
ij

over the width and height

dimensions i, j,

αc
k =

1

Z

∑

i

∑

j︸ ︷︷ ︸
global average pooling

∂yc

∂Ak
ij

, (11)

where yc is the classification score for class c and Ak are

the activations of the feature map k of the last convolutional

layer in the classification architecture.

We instead, use the absolute value of αc
k in our im-

plementation, then not needing the ReLU operation. The

ReLU is intended to only consider the features that have a

positive influence on the class of interest, as negative pix-

els are likely to belong to other categories, according to

the authors. By using our alternative, we do not discard

the weights that are big in magnitude but of negative sign,

which in our experiments leaded to better instance segmen-

tation cues. A comparison of the computed Grad-CAM

heatmaps when using both the original implementation and

the absolute weights variant is shown in Fig. 4. The original

Grad-CAM implementation can lead us to incomplete or not

so suitable heatmaps to act as an initial approximate of the

masks. In our variant, while the highest value is located in

the foreground of the object, the high activation areas cover

a region of the foreground that can also be useful.

4. Experiments

We assess the performance of our method on the most

representative MOTS benchmark, KITTI MOTS [22]. It

provides balanced training and validation sets of cars and

pedestrians. It is comprised of 21 sequences, extracted from

the original KITTI tracking dataset, and a total of 8k frames

that contain 11k pedestrian instances and 27k car instances.

4.1. Metrics

The MOTS performance is evaluated by the metrics de-

fined in [22]. The authors proposed an extension of the

MOT metrics [3] to assess the instance segmentation per-

formance. Instead of considering the IoU of the predicted

bounding boxes with the ground truth, as in the original

metrics, they define them in terms of the mask IoU, as fol-

lows

sMOTSA =
T̃P − |FP | − |IDS|

|M |
(12)

Figure 4. Comparison of Grad-CAM heatmaps when using the

original Grad-CAM definition (top) and an implementation variant

that uses the absolute value of the global-average-pooled gradients

(bottom). The activations are color-coded in the heatmap from the

lowest (blue) to the highest (red).

MOTSA =
|TP | − |FP | − |IDS|

|M |
(13)

MOTSP =
T̃P

|TP |
, (14)

where M stands for the set of ground truth masks, IDS is

the number of identity switches, TP account for the masks

mapped to a ground truth mask with an IoU > 0.5, T̃P
is the sum of IoUs between all the predicted and ground

truth masks whose IoU is at least 0.5, that is, the sum of the

IoUs between the predicted masks counted as TP and their

associated ground truth.

MOTSP is a pure segmentation metric; it measures the

IoU of the TP predicted masks with the ground truth, which

provides a measurement of the segmentation quality alone.

MOTSA and sMOTSA also consider the detection and

tracking performance, being sMOTSA more restrictive on

the instance segmentation contribution. MOTSA only con-

siders the number of predicted masks with an IoU > 0.5
with the ground truth, while sMOTSA counts the IoU value

itself, thus penalizing low IoUs, despite being greater than

0.5.

4.2. Experimental setup

To show the effectiveness of our method, our backbone

ResNet-50 is just pretrained on ImageNet. Pretraining on

other benchmarks significantly boosts the performance of

the models, as shown in [16]. However, we are not inter-

ested in optimizing a fully supervised baseline but in com-

paring the proposed weakly supervised approach with re-

spect to the fully supervised baseline under the same pre-

training conditions.
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Hyperparameter Value

Training

Optimizer SGD

Learning rate 0.02

Number of Epochs 150

Total batch size 24

Embedding dimensionality Nd 8

Hard triplet loss margin α 0.2

Loss weight λCRF 2 · 10−7

Grad-CAM threshold µA 0.5

Tracking

Length of temporal window 10

Detection threshold 0.9

Table 1. Hyperparameters.

On our main experiments, we set the hyperparameters to

the values reported in Tab. 1. Training is run on four V100

GPUs with 32GB of memory.

4.3. Weakly supervised approach

Since there are no previous works on weakly supervised

MOTS, we compare the performance of our weakly super-

vised approach to the performance of our same model un-

der the fully-supervised setting. To demonstrate that our

model can achieve state-of-the-art performance under the

supervised setting, we compare it against the current state

of the art models under the same training conditions, i.e.

just pre-training the ResNet-50 backbone on ImageNet. In

Tab. 2, on the top section, we compare the performance

of our method trained in a fully supervised manner, with

the state-of-the-art model [16]. The second section shows

the performance of our weakly supervised approach. Our

model on both supervised and weakly supervised settings

uses the same training hyperparameters (see Tab. 1). When

our model is trained on a supervised setting, it achieves

slightly superior performance than the state of the art on

cars, but is inferior on some metrics for pedestrians. How-

ever, MOTSP, defined in Eq. 14, measures the quality of

the segmentation masks without taking into account the de-

tection or tracking performance. Our values on this metric,

when we train fully supervised, are equivalent to the state

of the art on both classes.

Finally, the relative drop of performance when training

weakly supervised with respect to the supervised case is

shown at the bottom line of the table. The performance

drop on MOTSP is just a 12.0 % and 12.7 % for cars and

pedestrians, respectively. This indicates the drop in seg-

mentation quality is not drastic, considering that our model

has never been trained with any mask annotation. Re-

garding MOTSA and sMOTSA, the performance is signif-

icantly worse on pedestrians than on cars due to the na-

Figure 5. Qualitative results on test sequences of KITTI MOTS.

Different colors represent the different identities.

ture of pedestrians masks. Pedestrians are smaller objects

and present more irregular shapes, then retrieving precisely

the edges on 128×128 patches is harder. Moreover, Grad-

CAM heatmaps can sometimes present high values on the

surrounding area of the legs, which leads to incorrect fore-

ground information. Qualitative results are shown on Fig.

5.

4.4. Weakly supervised approach ablation study

In order to assess the contribution of our proposed losses

to the instance segmentation supervision, we conduct an ab-

lation study in which we test the overall performance when

removing the supervision of each loss individually. In the

case of the LT loss, we still train the Tracking Head and

consider the predicted foreground of the ROIs to compute

the tracking embedding vectors, but we do not propagate

the gradients to the instance segmentation branch. Thus,

we still train the tracking task but it does not affect to the

instance segmentation supervision.

On Tab. 3, we report the performance of our approach

when training with the three losses on the first row. The

ablation study was performed in a weaker baseline than our

main results from Tab. 2. The second and third row cor-

respond to the experiments, trained with the same hyperpa-

rameters, when removing the supervision of LCRF and LT

losses, respectively. The LCRF loss clearly helps the super-

vision, as all the metrics suffer a performance drop when it

is not applied. The tracking loss LT , however, does help on

pedestrians but not on cars. Then, the contribution of the

mask-pooling layer as a form of supervision on the weakly

supervised case is not always positive.

5. Conclusions

We have introduced the problem of weakly supervised

MOTS, i.e. the joint problem of weakly supervised instance

segmentation and tracking. We have contributed a novel

approach that solves it by taking advantage of the multitask
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Method sMOTSA MOTSA MOTSP

Car Ped Car Ped Car Ped

Fully supervised

MOTSNet [16] 69.0 45.4 78.7 61.8 88.0 76.5

Ours 69.1 35.1 80.1 52.0 87.0 75.3

Weakly supervised

Ours 54.6 20.3 72.5 39.7 76.6 65.7

Relative performance drop 21.0 42.2 9.5 23.7 12.0 12.7

Table 2. Results of our approach on KITTI MOTS. The ResNet50 backbone is just pretrained on ImageNet for all the models reported.

Weakly supervised sMOTSA MOTSA MOTSP

losses Car Ped Car Ped Car Ped

Lloc + LCRF + LT 49.3 13.1 67.6 32.0 75.0 64.8

Lloc + LT 44.3 10.2 66.9 30.7 69.6 63.5

Lloc + LCRF 55.0 11.0 73.0 31.2 76.7 62.5

Table 3. Results of the ablation study on the weakly supervised approach on KITTI MOTS (run on a previous weaker baseline).

problem we address. Our architecture is trained in a syner-

gistic manner so that the supervised tasks support the learn-

ing of the unsupervised one. In particular, we extract Grad-

CAM heatmaps from the classification head, which encode

foreground localization information and provide a partial

foreground cue to learn from, together with RGB image

level information that is employed to refine the prediction at

the edges of the objects. We have evaluated our method on

KITTI MOTS, the most representative MOTS benchmark,

and shown that the drop of performance between the fully

supervised and weakly supervised approaches on MOTSP is

just a 12 and 12.7 % for cars and pedestrians, respectively.

Finally, we have provided an analysis of the components of

our proposed method, assessing their individual contribu-

tion.
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