
Automatic Virtual 3D City Generation for Synthetic Data Collection

Bingyu Shen1, Boyang Li1, Walter J. Scheirer1

1University of Notre Dame, Notre Dame, Indiana

{bshen@nd.edu, bli1@nd.edu, walter.scheirer@nd.edu}

Abstract

Computer vision has achieved superior results with the

rapid development of new techniques in deep neural net-

works. Object detection in the wild is a core task in com-

puter vision, and already has many successful applications

in the real world. However, deep neural networks for object

detection usually consist of hundreds, and sometimes even

thousands, of layers. Training such networks is challeng-

ing, and training data has a fundamental impact on model

performance. Because data collection and annotation are

expensive and labor-intensive, lots of data augmentation

methods have been proposed to generate synthetic data for

neural network training. Most of those methods focus on

manipulating 2D images. In contrast to that, in this paper,

we leverage the realistic visual effects of 3D environments

and propose a new way of generating synthetic data for

computer vision tasks related to city scenes. Specifically, we

describe a pipeline that can generate a 3D city model from

an input of a 2D image that portrays the layout design of a

city. This pipeline also takes optional parameters to further

customize the output 3D city model. Using our pipeline, a

virtual 3D city model with high-quality textures can be gen-

erated within seconds, and the output is an object ready to

render. The model generated will assist people with lim-

ited 3D development knowledge to create high quality city

scenes for different needs. As examples, we show the use

of generated 3D city models as the synthetic data source

for a scene text detection task and a traffic sign detection

task. Both qualitative and quantitative results show that the

generated virtual city is a good match to real-world data

and potentially can benefit other computer vision tasks with

similar contexts.

1. Introduction

Computer vision tasks have witnessed rapid progress

thanks to the success of convolutional neural networks. As

the neural networks get deeper, the model performance gets

better, opening up new applications in the real world. How-

ever, deep neural networks are data-driven. Training a ro-

Figure 1: In this paper we introduce a pipeline that takes a

simple 2D layout image as input and outputs a virtual 3D

city model according to the specified design. The output

model consists of important city elements: building blocks,

road systems and street lamps. Each building is textured

with a real-world building facade. Specific objects, such as

road signs, can be added to these scenes to provide addi-

tional training and evaluation data for deep learning-based

detection algorithms.

bust and accurate network with millions of parameters re-

quires a significant amount of images. For example, Im-

9876161



ageNet [19] is a commonly used dataset comprised of ap-

proximately 1 million images and 1000 object classes. The

same thing is true for more specialize object cases like scene

text detection. The ICDAR 2015 Competition on Robust

Reading Dataset [13] consists of tens of thousands of video

frames and over 200,000 annotations within them. As data

collection and annotation are extremely expensive, it is not a

rare occurrence to take a model pre-trained on a large-scale

dataset as the backbone and then fine-tune it for a specific

task with a small-scale dataset.

Much effort has been spent developing techniques for

dataset augmentation [30]. A widely used methodology

is the manipulation of images with image processing op-

erations such as geometric transformations (e.g., cropping,

rotation, distortion), and random deformations (adding

noise) [25]. Another direction of dataset augmentation is

to generate synthetic images of the target category. For

example, Generative Adversarial Networks (GANs) have

been used to generate handwritten digit images [12] to

improve the classification performance of OCR models.

SyntheText [10] generates synthetic images for scene text

recognition by placing texts into natural images. While such

methods proved to be effective in improving the model per-

formance for a specific task, challenges remain in applying

them to other problems.

For example, autonomous driving is a combination of

a lot of computer vision algorithms that work with city

scenes. Algorithms aimed at different tasks are integrated to

make quick reactions to various signals captured by sensors

and cameras. Those tasks include, but are not limited to, ob-

ject detection, scene text recognition, and pedestrian behav-

ior prediction. Algorithms usually are trained on datasets

consisting of video clips and images collected from the real-

world such as KITTI [9]. Existing dataset augmentation

methods are restricted from generating videos or images

with a variety of city scenes. Therefore, it’s not uncom-

mon to utilize virtual scenes to train and test autonomous

driving algorithms [3, 1].

Compared with existing dataset augmentation tech-

niques, virtual scenes are extremely salable and also of-

fer environment parameters to simulate different weather

conditions. Despite the advantages, generating a city-scale

scene with accurate object models from a layout design can

be a labor-intensive and time-consuming task even for an

expert. This limits the application of virtual scenes to pro-

vide training data for computer vision tasks taking images

or videos captured by camera as inputs. As an alternative,

automatic 3D city model generation with high-quality and

versatile textures allow generating an unlimited amount of

data with controlled designs and accurate annotations, while

saving the effort spent on developing precise object meshes

by hand.

In this paper, we propose a pipeline that can automati-

cally generate a virtual 3D city model within seconds from

the input of an image. As shown in Fig. 1, the input of the

pipeline is an image that describes a city layout design and

the output is a 3D model with buildings, roads, and street

lamps placed in the corresponding location. To generate a

highly restored city scene, we apply real-world exterior tex-

tures to each building. The output 3D model is ready to use

with popular 3D render engines.

There are three major contributions in this work:

1. We designed a pipeline that allows users to generate

virtual 3D city models quickly from the customized

layout design. The layout is represented by color

blocks, and therefore the input images can be created

using any illustration software, which makes the entire

pipeline easy to use.

2. The generation process is quick and offers multiple op-

tions for customization. The entire scene generation

takes 35 seconds on average.

3. Finally, to prove the resulting 3D city model is appli-

cable for downstream tasks, two experiments are con-

ducted. 1. We trained a scene text detector images

from the rendered scene. 2. We trained a traffic sign

detector with images from the rendered daytime scene

and adapted it to the images from the rendered night-

time scene. Both the qualitative and quantitative re-

sults prove the quality and effectiveness of our gener-

ated models.

All data and code will be released following publication.

2. Related Work

2.1. 3D city generation from various inputs

Procedural modeling is one of the most widely used

methods to quickly generate a complex scene with a large

number of components, as it can be cumbersome to gen-

erate them manually. It computes output models based on

rule sets and grammars. Grammars are used to gradually

add more details to models at different levels according to

requirements [21]. CityEngine [16] first proposed a system

based on procedural modeling and L-systems [17] to gener-

ate 3D models for real cities. It deconstructs the problem of

city generation into road network construction and building

construction. To reconstruct the traffic system, CityEngine

requires an input of geographical maps and sociostatistical

maps. Later the commercial version of CityEngine, Esri

City Engine [23] improved on the pipeline to add photo-

realism. However, the input of Esri CityEngine is still GIS

information, like CityEngine, which constrains the source

of the generated model. The output of CityEngine is a

CityGml file, which cannot be edited and loaded directly

9877162



by popular 3D development software like Blender [5]. Al-

though it can be rendered into 3D models afterward, the

transfer between different model formats and development

tools increases the difficulty in use.

Random3DCity [4] also utilizes procedural modeling to

generate city models into CityGML files. Instead of read-

ing geographical images, it randomly creates a 3D city

scene with n buildings, where n can be any numerical in-

put. The buildings are placed in a
√
n ×

√
n grid and the

system allows certain angles of rotation. Dylla et al. [8]

employed CityEngine to reconstruct ancient Rome with an

output model of 400 million polygons, which offers an ex-

tremely fine level of geometric detail. Although procedural

modeling is not easy to start with for beginners, the resulting

3D models can be of sufficient quality for use in computer

vision tasks.

As deep learning is now operating in multiple areas of

computer vision, we find an increasing number of works

leveraging neural networks throughout the process of 3D

city generation. Beer [2] used GANs to learn the segmen-

tation of buildings from an orthographic city image and es-

timate the heights of city buildings. The result is a Level

of Detail (LOD) 1 modeling of the buildings in the input

image in CityGML format.

To summarize, existing works can generate 3D city mod-

els with fine details. However, there are some obvious gaps

that impede them to be widely used outside of the computer

graphics field. Procedural modeling is a rule-based coding

language. Although through definition, objects with com-

plex structures and details can be generated, it is not an easy

job for users to develop a complex rule set or grammars to

construct an entire city from scratch. Besides that, the input

of GIS files allows for very limited customization. While

Beer [2] reconstructs a 3D city using only 2D input images,

the reconstructed 3D scenes lack textures and road systems,

which makes them impractical to use for computer vision

tasks expecting real-world input.

2.2. Generation of 3D models for buildings

Similar to 3D city generation, procedural modeling has

been applied widely for generating 3D models of build-

ings. Müller et al. [14] developed a computer graphics ar-

chitecture(CGA) shape grammar that can produce high vi-

sual quality and geometric details for architectural models.

So 3D models can be created at a large volume at a low cost.

The CGA grammar addressed context-sensitive shape rules

and is robust to various architectural shapes and structures.

In Nishida et al. [15], the authors proposed using a CNN

to learn the parameters of procedural grammars. Given an

outline of an architecture’s silhouette, their method can gen-

erate the grammar parameters for all building components

from large-scale building structure to fine-scale windows

and door geometry.

Deep neural networks have also been applied in this

problem to facilitate the generation of object textures. Isola

et al. [11] developed an adversarial neural network that can

generate the exterior of a building according to an input im-

age, which depicts its facade design. The model automati-

cally learns not only the mapping between the input and out-

put images, but also the loss function to train such mapping.

It has been successfully applied to learn realistic textures of

buildings from an input of a building’s facade.

To avoid the complexity of procedural modeling, in this

paper we propose to generate 3D city models from 2D input

images. The output is a 3D object that is ready to be loaded

by most 3D rendering engines. The pipeline can quickly

generate a 3D city model with buildings, a road system and

street lamps. The model can be customized by users to in-

sert objects of interest. All components in the scene will

be rendered with high-quality textures. To the best of our

knowledge, this is the first attempt at bridging the gap be-

tween user input as simple 2D images and a high-quality 3D

model output that is ready to be used for object recognition

tasks.

3. Virtual 3D City Generation Pipeline

The outline of our proposed processing pipeline is shown

in Fig. 2. The input is an image representing the layout of a

city using different color blocks. The pipeline will take this

input and detect boundaries for the color blocks and extract

coordinates to place corresponding city elements. Finally,

object models will be placed into the scene with textures

assigned to complete the 3D city model.

3.1. Layout design and parsing

We designed a simple algorithm to automatically gen-

erate layout designs with a default size of 768 × 768 pix-

els. Three types of objects that convey the key information

of a city layout are included in the output image: build-

ing blocks, roads, and street lamps. Roads are represented

by greys lines with a width of 32 pixels and will be ran-

domly placed vertically and horizontally. The areas cropped

by road lines will be filled with building blocks, which are

represented by blue pixels. Each blue block will be sur-

rounded by green pixels with a width of 8 that represents

available space for street lamps. Some output layout de-

signs are shown in Fig. 3. Given an input image with differ-

ent colors representing different city elements, the next step

is to extract the coordinates of them and place correspond-

ing objects into the output 3D city model.

Coordinates of buildings. We use a simple find con-

tour algorithm [7] to extract the bounding box coordinates

for each blue block. In the real world, buildings are usu-

ally grouped together and compose a building block. To

generate a similar city scene, each blue area is defined as

a building block, and buildings are placed into the block

9878163



Figure 2: An overview of our 3D city model generation pipeline. The input image contains a layout design of the city where

different colors represent different city elements. The output from object construction will automatically add textures. The

final 3D model can be rendered in 3D development software.

Figure 3: Examples of automatic layout design. Blocks

with different colors represent areas to place different ob-

jects: pixels in blue represent building blocks, grey lines

represent the road system, and pixels in green represent

available areas to place street lamps.

following Algorithm 1. In our pipeline, the dimensions of

buildings to be placed are pre-defined and each building is a

cuboid with a square bottom. Given a list of building widths

and a block’s size, we start placing buildings from the top

left by randomly selecting one building that fits into the

block. Then the algorithm continues to the area on the right

of the placed building and randomly selects other buildings

that fit the updated dimension constraints. The area below

the placed buildings will recursively call the algorithm. As

shown in Fig. 4, the algorithm can place buildings with a

proper density into each building block under the dimen-

sion constraints.

Coordinates of road system. Each road is defined by its

center coordinates, width, length, and rotation angle. We

draw a one-pixel yellow line in the center of each road

to help coordinate extraction when the road is generated.

Firstly all the yellow-lines in the original image are filtered

out. If there are consecutive pixels longer than 5 pixels, the

start and end pixel location will be captured. Accordingly,

we can calculate the center of the road, as well as its length.

The width of the road is determined using a gray-scale im-

age converted from the original input. Given the center of

Figure 4: Examples of generated building plans using Al-

gorithm 1 given the same input layout. Yellow squares rep-

resent buildings and the dimensions of squares are propor-

tional to the size of the building to be placed.

Figure 5: Facade of a building and its exterior. We cropped

the image and calculate the dimension of buildings accord-

ing to the facade annotation.

a vertical road, the width will be the number of consecutive

pixels in the x-axis, and vice versa for horizontal roads.

Coordinates of street lamps. Street lamps are indispens-

able elements for a city scene. In the layout design, green

areas that are along both sides of the roads are space avail-

able for street lamps. Street lamps will be placed every 100

pixels along the road. No street lamps will be placed on

the interaction area of two roads. One lamp will be deleted

arbitrarily if two street lamps are too close to each other.

9879164



Figure 6: Building models with CMP facade image tex-

tures. Left: 3D objects’ meshes, Right: rendered view of

the buildings with textures added.

3.2. Assign real­world facade textures to buildings

To create real-world city scenes, we use the CMP

dataset [22] to generate the building textures. The CMP

dataset contains 600 rectified images of facades from vari-

ous sources, and all images have been manually annotated.

As shown in Fig. 5, annotation includes 11 classes of build-

ing components such as window, door, balcony, etc. We

further annotated the dataset with the floor number for each

facade. By fixing the floor height, the dimensions of all

buildings are proportionally scaled. To prepare a building

texture, images are first cropped to contain only part of

the facade below the first molding. Given a cropped fa-

cade image of size cw × cy and its floor number h, the

building dimensions applying the image texture will be

(cw/cy) × (cy/h × 3). As shown in Fig. 6, the width and

height of buildings are proportional and realistic. All build-

ings have consistent floor height, which further enhances

the visual quality.

Roads and street lamps are assigned with uniform default

textures. The texture of roofs are randomly selected from

the several provided textures that best match the color of

Algorithm 1: Building Placement

Result: Global coordinates for center and

dimension of each building in the block

Input: block’s top left corner (x1, y1), block’s right

bottom corner (x2, y2), list of buildings’ widths;

while Buildings already placed do not exceed

block’s dimension horizontally do
Randomly select a building from the list which

satisfies the dimension requirements;

if Right bottom corner of the building is within

the block then

Add the current building to the result;

Recursively call this function with the area

below current building;

Horizontally move to the area to the right of

the current building with gap between

buildings added;

else

exit;

Figure 7: Rendered city scenes with road signs inserted.

The bounding boxes of objects are automatically calculated.

the molding in the building texture.

3.3. Scaling

The output 3D city model has a default size of n × m
meters squared where n and m are dimensions of the input

layout image. We also provide a function to quickly scale up

the city by mirroring the input layout city. Currently, three

types of mirroring are supported: flip vertically(1), flip hori-

zontally(2), and flip both horizontally and vertically(3). The

user can create a new layout by specifying a combination of

mirroring. In this way, a simple layout can be quickly repli-

cated to generate a more complex city model.

3.4. Render view

The output of our pipeline is an object file with textures.

It can be imported and edited by most of the popular 3D

modeling software. Depending on the requirements, it can

also be exported to other formats to be rendered by different

rendering engines. Through rendering, the generated 3D

city can be utilized in many different ways.

For instance, we can use the model as a generator

of training data for computer vision tasks related to city

scenes. Given the coordinates of objects, the bounding box

of a specific object in the rendered view can be calculated.

By adjusting the position of objects and the position of the

camera, we can generate an unlimited amount of data with

high-quality city scenes to train object detection algorithms.

As shown in Fig. 7, we can easily create city scenes with dif-

9880165



Figure 8: Scene text can be inserted as signs on the build-

ings. The distortion of texts is realistic as the camera can

capture the same building from different angles.

ferent detection targets such as cars and road signs. Through

the control of the environment properties, we can simu-

late different conditions such as time of day and weather.

While real-world datasets are extremely expensive to col-

lect and get annotation, our pipeline provides an alternative

with high-quality visual effects.

In this paper, we provide an example of using the gen-

erated 3D city model to collect datasets for a scene text

detection task. As shown in Fig. 8, texts can be placed

on the walls of buildings in the generated city. Compared

with generating synthetic scene text images by inserting

texts into still images, rendered images using our output

3D model are with realistic characteristics found in the wild

scenes, such as distortion and reflection. Additionally, us-

ing our pipeline, we can create training data for difficult

cases of scene text such as round texts and texts that have

been partially occluded by other objects. Such datasets will

contribute to training a robust algorithm applicable to many

different scenarios.

4. Experiments

We generated 100 city models to collect data and demon-

strate the quality of rendered virtual cities and the speed per-

formance of our pipeline. The experiments are conducted

on a workstation with an Intel Core i9-9900K CPU and two

1080 Ti GPUs. We evaluated different aspects of the 3D city

models including model generation time, model quality and

Pipeline
Execution time

AVG. (sec) STD. (sec)

Layout design 1.372 0.021
Coordinates extraction 1.168 0.076
3D model generation 32.792 18.947
Total 35.829 19.717

Table 1: Execution time of different steps in the pipeline.

rendered view experience.

4.1. Timing analysis of generating 3D city models

As shown in Table 1, the entire time cost for generating a

3D city model is 35 seconds on average, and it is dominated

by the 3D model generation step. This quick generation

process is crucial for applications of the virtual cities, as

users can view the scenes immediately and make edits if

necessary. As shown in Fig. 10a, most of the city generation

time is under 60 seconds except for some outliers. These

outliers are layout images that have a very complex road

system or contain many more buildings than average.

4.2. Qualitative analysis of rendered scenes

As shown in Fig. 9, the output of our pipeline is a 3D ob-

ject with the layout design specified by the input image and

building blocks of proper density. All objects in the scene

have corresponding textures applied. Through a closer look

into the 3D model, as shown in Fig. 10b, the visual effects

are realistic because all building textures are pre-processed

and building dimensions have been proportionally scaled to

match a consistent floor height.

4.3. Datasets for scene text detection training

To prove the quality of the rendered scenes using the

output 3D city model, we collected a dataset for a scene

text detection task. Scene text detection is a highly active

research area of computer vision. Because of the rich in-

formation embedded in the texts in natural scenes, extract-

ing them can help people better understand the surround-

ings of a scene. Currently, the state-of-the-art scene text de-

tection and recognition algorithms are trained mostly with

synthesized datasets such as SynthText [10]. There also ex-

ist other image datasets for this task collected from the real

world [20].

We draw inspiration from this work [6] and trained a

scene text detector with the dataset collected. The detec-

tion model used a backbone of FasterRCNN [18] and the

convolutional layers are replaced with ShuffleNet[29] archi-

tecture.

To prepare the training data, we created multiple planes

with textures of random English words. Then these planes

are randomly placed on the walls of the buildings. A camera

is set to move along the roads and we captured 100 images

9881166



Figure 9: Visualization of outputs from different steps in our pipeline. From left to right: the input layout design, processed

layout image with building positions, generated 3D city model, and zoomed-in view of the city scene.

(a) (b)

Figure 10: Left: scatter plot showing the execution time of

3D model construction as a function of model complexity

(number of polygons in the scene). Right: rendered 3D city

using Blender.

Figure 11: Left: synthetic data generated in SynthText

dataset. Right: sample image in ICDAR15 dataset

from the rendered view. Coordinates of bounding boxes of

inserted text planes are calculated automatically. We com-

pared the model performance with training the scene text

detector using SynthText [10] and ICDAR15 [13] datasets.

ICDAR15 has served as a common benchmark for scene

text detection algorithms [28, 24, 27]. To be more specific,

the scene text detection model is trained separately on three

different datasets (ICDAR15, SynthText, and rendered im-

ages from our virtual city), each with 100 images. 85 im-

ages are used for training and 15 images for validation. The

model was trained for 30 epochs on each training set and the

results are reported on the ICDAR test set using the model

that achieved the best performance on the validation set dur-

ing training.

As shown in Table 2, fine-tuning the object detection

model with a dataset collected from our generated 3D city

model achieved comparable performance to both synthetic

and real-world fixed datasets. Using images generated by

our 3D city model achieved a comparable F-score and the

best precision rate among the three datasets. This demon-

Training set Precision Recall F-score

ICDAR15 34.05 68.86 44.08

SyntheText 37.95 42.28 40.01

Ours 46.59 34.25 39.48

Table 2: Scene text detection performance comparison

among different training datasets.

Figure 12: Examples of scene text detection and recognition

results. Left: a synthetic image rendered from our virtual

city. Right: an image from ICDAR15 test set.

strates that our method is capable of generating valid train-

ing data for text detection tasks. The 3D environment pro-

vides the possibility of viewing the same texts from differ-

ent angles and distances. Therefore the model can learn

the characteristics of texts better with diverse conditions.

Sample detection results from the model fine-tuned with our

generated data are shown in Fig. 12.

Using training data from ICDAR15 yields the best F-

measure, as well as recall rate. This is not surprising be-

cause usually the training images and test images are col-

lected under a similar condition. Therefore the model can

easily adapt the knowledge learned during training to infer-

ence. However, the dataset collected from our generated

3D city model can be improved easily to adapt to a specific

dataset like ICDAR15. By introducing more fonts, increas-

ing text density, and adjusting the lighting conditions, an in-

finite amount of customized high-quality training data can

be generated with our virtual 3D city at no cost.

4.4. Datasets for traffic sign detection training

We also collected a dataset for the traffic sign detection

task. Traffic sign detection is an essential component in Ad-

vanced driver-assistance systems (ADAS) as driving opera-

tions instantly depend on the guidance of the message con-

veyed by the road signs. Failing to read road signs such as

9882167



Figure 13: Examples of scenes created for traffic sign de-

tection. Left: rendered daytime city scene with traffic signs

inserted. Right: rendered nighttime city scene with traffic

signs inserted.

stop, speed limit, and pedestrian crossing signs will result in

irredeemable losses. Therefore, it’s important to accurately

retrieve the road signs under different conditions. Specif-

ically, the change of illumination between day and night

raises serious challenges of developing ADAS with night

vision[26]. In this section, we proved the feasibility of us-

ing our output 3D city model to create scenes with different

daytime settings and provide training data for traffic sign

detection at nighttime.

To prepare the training data, we inserted a random

amount of traffic signs along the roads. A camera is set

to move along the roads and we captured 120 images ren-

dered from the city with synthetic daylight and 150 images

rendered from the city with synthetic night sky. Coordinates

of bounding boxes of inserted text planes are calculated au-

tomatically. As scenes shown in Fig 13, traffic signs with

daylight are clear and easy to recognize. In the contrast,

the signs become hard to detect during nighttime due to the

low-illumination.

We chose the same object detection model used in the

scene text detection task and trained it for traffic sign de-

tection. The detection performance is compared between

model trained with only the images under daytime setting

and trained with images under both daytime and nighttime

setting. For the daytime image dataset, it splits into 100 im-

ages for training and 20 images for validation. For the night-

time image dataset, it splits into 100 images for training, 20

images for validation, and 30 images for testing. The detec-

tor is firstly trained on images with daytime setting for 30

epochs. Detection results on nighttime testing images with

the model achieved the best performance on the validation

set during training are reported in Table 3. Then we per-

formed transfer learning by fine-tuning the model trained

on daytime images with the nighttime images. Detection

performance is reported with the model yields the best per-

formance during fine-tuning with the nighttime image vali-

dation set.

As shown in Table 3, fine-tuning the object detection

model with nighttime images achieved significant improve-

ment on both precision and recall rate. It shows that our

rendered scenes are capable of providing valid training data

with different light settings. As shown in Fig 14, after fine-

Training set Precision Recall F-score

Day imagery only 40.42 32.75 36.19

Day and Night imagery 48.48 34.78 40.50

Table 3: Traffic sign detection performance comparison

among different training datasets.

Figure 14: Prediction examples of traffic sign detector

trained with different synthetic image dataset rendered from

our output 3D city. Left: prediction result of the object de-

tector trained with only daytime images and it failed to de-

tect the road sign in a nighttime image. Right: prediction

result of the object detector further fine-tuned with night-

time images and the road sign was successfully retrieved

under extremely low illumination.

tuning with nighttime images, the detector can retrieve traf-

fic signs under extremely low illumination. This indicates

the potential of using our pipeline as a training data source

for harder cases, such as traffic sign detection with partial

occlusion and adversarial attacks. An unlimited amount

of training images can be generated using the proposed

pipeline with little effort.

5. Discussion and Future Work

In this paper, we developed a pipeline that can take a

2D sketch as input and generate a 3D city model according

to the information embedded. We also offer an algorithm

to quickly generate a large number of city layout designs

to choose from. Beyond layout design, the pipeline also

provides other parameters to refine the output 3D models.

The model can quickly scale up through flip operations.

The textures are processed before being applied to build-

ings and all building dimensions are proportionally scaled

to match a consistent floor height. The output virtual 3D

city model can be directly modified and rendered using 3D

development tools. Computer vision algorithms related to

city scenes can be trained using rendered images generated

by the virtual city. The scene text detection and traffic sign

detection examples in this paper proved the effectiveness of

3D city models generated using our pipeline. In the future,

we can leverage more complex techniques and incorporate

accurate GIS information to refine the scene and include

more details.

9883168



References

[1] Nvidia drive sim. Accessed: 2020-09-01.

[2] Lukas Beer. Automatic generation of lod1 city models

and building segmentation from single aerial orthographic

images using conditional generative adversarial networks.

GI Forum 2019,, 7:119–133.

[3] Andrew Best, Sahil Narang, Lucas Pasqualin, Daniel Barber,

and Dinesh Manocha. Autonovi-sim: Autonomous vehicle

simulation platform with weather, sensing, and traffic con-

trol. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR) Workshops, June 2018.

[4] Filip Biljecki, Hugo Ledoux, and Jantien Stoter. Generation

of multi-LOD 3D city models in CityGML with the proce-

dural modelling engine Random3Dcity. ISPRS Ann. Pho-

togramm. Remote Sens. Spatial Inf. Sci., pages 51–59, 2016.

[5] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Blender Institute,

Amsterdam, 2019.

[6] Fedor Borisyuk, Albert Gordo, and Viswanath Sivakumar.

Rosetta: Large scale system for text detection and recogni-

tion in images. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data

Mining, pages 71–79, 2018.

[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000.

[8] Kimberly Dylla, Bernard Frischer, Pascal Müller, Andreas

Ulmer, and Simon Haegler. Rome reborn 2.0: A case

study of virtual city reconstruction using procedural mod-

eling techniques. Computer Graphics World, 16(6):62–66,

2008.

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231–1237,

2013.

[10] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Synthetic data for text localisation in natural images. In

IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017.

[12] Ganesh Jha and Hubert Cecotti. Data augmentation for hand-

written digit recognition using generative adversarial net-

works. Multimedia Tools and Applications, pages 1–14,

2020.

[13] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos

Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwa-

mura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chan-

drasekhar, Shijian Lu, et al. Icdar 2015 competition on robust

reading. In 2015 13th International Conference on Docu-

ment Analysis and Recognition (ICDAR), pages 1156–1160.

IEEE, 2015.

[14] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,

and Luc Van Gool. Procedural modeling of buildings. In Acm

Transactions On Graphics (Tog), volume 25, pages 614–623.

ACM, 2006.

[15] Gen Nishida, Adrien Bousseau, and Daniel G Aliaga. Proce-

dural modeling of a building from a single image. In Com-

puter Graphics Forum, volume 37, pages 415–429. Wiley

Online Library, 2018.

[16] Yoav IH Parish and Pascal Müller. Procedural modeling of

cities. In Proceedings of the 28th annual conference on Com-

puter graphics and interactive techniques, pages 301–308.

ACM, 2001.

[17] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and

Radomı́r Měch. Visual models of plant development. In

Handbook of formal languages, pages 535–597. Springer,

1997.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[20] Asif Shahab, Faisal Shafait, and Andreas Dengel. Icdar

2011 robust reading competition challenge 2: Reading text in

scene images. In 2011 international conference on document

analysis and recognition, pages 1491–1496. IEEE, 2011.

[21] Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomı́r

Měch, and Vladlen Koltun. Metropolis procedural modeling.

ACM Transactions on Graphics (TOG), 30(2):11, 2011.

[22] Radim Tyleček and Radim Šára. Spatial pattern templates

for recognition of objects with regular structure. In Proc.

GCPR, Saarbrucken, Germany, 2013.

[23] Eric van Rees. Esri cityengine 2013. GeoInformatics,

17(2):6, 2014.

[24] Wenhai Wang, Enze Xie, Xiang Li, Wenbo Hou, Tong Lu,

Gang Yu, and Shuai Shao. Shape robust text detection with

progressive scale expansion network. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 9336–9345, 2019.

[25] Curtis Wigington, Seth Stewart, Brian Davis, Bill Barrett,

Brian Price, and Scott Cohen. Data augmentation for recog-

nition of handwritten words and lines using a cnn-lstm net-

work. In 2017 14th IAPR International Conference on Doc-

ument Analysis and Recognition (ICDAR), volume 1, pages

639–645. IEEE, 2017.

[26] Yuxuan Xiao, Aiwen Jiang, Jihua Ye, and Ming-Wen

Wang. Making of night vision: Object detection under low-

illumination. IEEE Access, 8:123075–123086, 2020.

[27] Youjiang Xu, Jiaqi Duan, Zhanghui Kuang, Xiaoyu Yue,

Hongbin Sun, Yue Guan, and Wayne Zhang. Geometry nor-

malization networks for accurate scene text detection. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 9137–9146, 2019.

[28] Fangneng Zhan, Chuhui Xue, and Shijian Lu. Ga-dan:

Geometry-aware domain adaptation network for scene text

9884169



detection and recognition. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 9105–9115,

2019.

[29] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

6848–6856, 2018.

[30] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin,

Jonathon Shlens, and Quoc V Le. Learning data aug-

mentation strategies for object detection. arXiv preprint

arXiv:1906.11172, 2019.

9885170


