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Abstract

Autonomous systems deployed in the real world have

to deal with potential problem causing situations that they

have never seen during their training phases. Due to the

long-tail nature of events, collecting a large amount of data

for such corner cases is a difficult task. While simulation

is one plausible solution, recent developments in the field

of Generative Adversarial Networks (GANs) make them a

promising tool to generate and augment realistic data with-

out exhibiting a domain shift from actual real data. In this

manuscript, we empirically analyze and propose novel so-

lutions for the trust that we can place on GAN generated

data for training and validation of vision-based perception

modules like object detection and scenario classification.

1. Introduction

The current surge in the development and industrializa-

tion of self-driving cars can be largely attributed to recent

developments in the field of artificial intelligence. Several

machine learning, especially deep learning, based modules

in perception, prediction, and planning of autonomous ve-

hicles learn and update themselves in a data-driven manner.

These models typically need a lot of diverse and represen-

tative data in the development process. However, there are

many real-world scenarios that either do not exist or exist in

smaller quantities in finite datasets used for teaching these

models. This is often referred to as the long tail problem.

Another major challenge is the effort and cost associated

with data labeling. In order to generate massive amounts of

diverse data in a fully labeled manner for ADAS develop-

ment and testing, simulation is considered a vital tool. One

primary problem associated with such simulators is that of

the domain shift. Even for high fidelity simulators, the way
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Figure 1. Exploring the usage of GAN generated out-of-

distribution data for perception tasks in autonomous driving. The

solid line shows the pipeline for augmenting training data using

GANs. The dashed lines indicate the usage of real and generated

data for evaluating downstream perception modules.

the rendering is done often does not match accurately with

the physics of real-world sensors. This is where Genera-

tive Adversarial Networks (GANs) [8] have come up as an

interesting alternative to generate realistic data.

This paper aims to thoroughly study the usability and re-

liability of GAN generated data to tackle long-tail situations

in particular, as shown in Figure 1. The major contributions

of this paper can be summarized as follows:

1. Analysis of using GANs for out-of-distribution data

for training two different perception tasks

2. Investigate the reliability of GAN generated data for

testing or validating perception modules

3. Design GAN loss functions such that it can not only

focus on visuals quality but also downstream usability

of generated data.

4. Propose novel ways in using GAN for simulating cor-

ner case traffic scenarios like sharp cut-ins.

After a literature survey in Section 2, Section 3 introduces

the overall system design of GAN based simulators. We ex-

plain our dataset in Section 4. Several experiments in Sec-

tion 5 and 6 show how perception models behave when we

consider GAN generated data. Our experiments cover the

aspects of the impact of GANs for both training and testing
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of perception modules. Our conclusions are summarized in

Section 7.

2. Related Work

Generative adversarial nets: GANs for image genera-

tion have generator and discriminator neural networks com-

peting against each other. After reaching the equilibrium

point through training, the generator can create realistic im-

ages that can somewhat confuse the discriminator in ad-

judging whether it is a real or fake image. The optimal

GAN was proven to be the case when the generator’s output

distribution matches the training data distribution. Condi-

tional GANs [22] follow a similar structure but rather focus

on generating images based on a given conditional input.

These conditional GANs can be useful as labeled data gen-

eration tools for autonomous perception tasks. A popular

family of conditional GANs is the pix2pix [14] style mod-

els. The original pix2pix showed how realistic images could

be generated from semantic segmentation masks as input.

Latter works like pix2pixHD [33] have largely improved

the quality and resolution. In the absence of paired data,

unsupervised image to image translation networks, for in-

stance, CycleGAN [38], and MUNIT [13], can help convert

images from one domain to another. Moreover, methods

such as [18] and [12] have been used to generate specific

mask styles for road objects given just a context or a lo-

cation. Similarly, there are also generative inpainting [36]

networks that can delete specific objects and fill the cropper

region by extrapolating neighborhood background.

Metrics for evaluating GANs: Several metrics like In-

ception score [28], Frechet Inception distance [11], Wasser-

stein Distance [9], Precision and Recall [17] and others

[2, 30, 34] have been proposed to evaluate GANs. However,

most of these metrics are only applicable when the aim is to

generate new and diverse samples but still belonging to the

training data distribution. These metrics also do not specify

the subsequent impact on systems that are going to consume

them.

GANs for data augmentation: There have been nu-

merous papers [29, 7, 26] that show the advantages that

GANs bring in. Yet, [27] recently showed that the usage

of BigGAN [3] did not showcase any advantage in terms

of improving image classification accuracy on ImageNet.

Although this area is exciting, a relatively under-explored

topic is the impact of GAN data to address rare or unseen

data modes that are absent in the dataset.

Applications for autonomous systems: While GANs

have been widely used to create images from semantic

masks, there is also research on conversion between day and

night [1], removing rain [20], fog addition [19] and several

other applications as pointed out in [31] that can have po-

tential usage for self-driving vehicles. There are also GAN

based methods such as DeepRoad [37] which propose au-

Figure 2. Example modules of GANipulator system: (a) Insertion,

(b) Deletion, and (c) Style and Domain change.

tomated system testing of neural networks across multiple

situations. Nevertheless, these works have not primarily

touched on the trust and reliability aspects of using GANs

as a substitute for real data collection, which is the main

focus of this paper.

3. GANs as Simulator Systems

In order for GANs to serve as a reliable substitute for

graphic simulators, the overall system should be able to en-

compass all the features that can be achieved using conven-

tional simulators used for perception tasks. Some of these

are:

• Insertion: It is the ability to add an object or set of ob-

jects at a specified location in a user-friendly manner.

• Deletion: One should be able to remove objects from

the scene and realistically fill it with the background.

• Editing: There should be one-to-many modules to

come up with various shapes and structures of road ob-

jects and traffic agents using a friendly user interface

• Motion and behavior: It should simulate imagery for

scenarios with different types of motion patterns of

traffic agents.

• Programmatic generation of variations: Large GAN

generated datasets can be sampled by programmati-

cally varying conditional inputs or other features.
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• Style and domain: One should be able to generate

data as per various weather, visibility conditions, and

sensor specifications.

Figure 2 illustrates some of these traits of a GAN based

simulator, hereafter referred to as GANipulator, and how

it can be used to create long tail situations, like inserting

a child playing in the middle of the road. The subsequent

experiment sections cover two pairwise combinations of a

data generator and downstream perception task. The first

one uses CycleGAN as the data generator and YOLOv5 to

perform object detection in day and night time images. The

next one applies pix2pixHD as the GANipulator module

and a CNN-LSTM [6] as the perception task to detect sharp

cut-in behavior of other vehicles in front of the ego vehi-

cle. In the following sections, we report the implementation

details and results of using GANs for two different tasks,

namely object detection and scenario (sharp cut-in) detec-

tion. For these, we apply two different types of GANs, Cy-

cleGAN and pix2pixHD respectively, to evaluate whether

GANs can be trusted in training and testing perception mod-

els.

4. Dataset

For our experiments, we were unable to find an open-

source camera-based driving dataset that is pixel-wise se-

mantically labeled as well as containing a few long-tail

out-of-distribution situations such as sharp cut-ins, diverse

lighting, and weather conditions. Thus, we collected and

annotated about 8 hours of data by driving on California

highways in a course of two months. Although the entire

sensor suite comprises multiple front view and top view

fisheye cameras, radars, and LiDAR, we only focus on

perception modules using the high-resolution center front-

facing camera (1920 × 1208) in this paper. 3959 discrete

images were randomly sampled from the driving dataset to

be pixel-wise annotated with instance-level semantic seg-

mentation masks. Additionally, 600 short video clips were

annotated based on the type of event (like lane change).

For our first experiment described in section 5, we used

the segmentation masks to obtain bounding box ground

truths for three categories of highway traffic agents - (1)

cars, (2) motorbikes, and (3) big vehicles like trucks and

buses. By virtue of the long tail distribution, although we

have instances of fog, rain, and rare events like accidents

in our dataset, the frequency is too small to do any sort of

analysis with statistical significance. Therefore, we treat the

night time domain as the out-of-distribution mode for which

we assume training data is either rare or non-existent. Of

the 3959 labeled images chosen for object detection exper-

iments, only 299 of them are night images, and the rest are

day images with the visible horizon. The experiments are

designed to assess whether we can utilize GAN generated

Figure 3. An illustration of CycleGAN architecture.

night images for downstream object detection training and

evaluation.

For the second application, section 6, we extract 2 to 3

seconds short video clips from the aforementioned driving

dataset where the images are sampled at 30 frames per sec-

ond. We define sharp cut-in as an abrupt changing of lanes

of a vehicle from an adjacent lane towards the front of the

ego vehicle. We have many normal driving scenarios but

only 11 events that can be categorized as sharp cut-ins; we

use all of these events in the test set and thus have zero in-

stances of real sharp cut-ins in the training set. Our training

dataset consists of 94 normal real video clips, 97 GAN gen-

erated sharp cut-in clips, and 110 generated normal clips.

Our validation set consists of 11 real sharp cut-ins and 11

normal video clips. It is worth noting that these clips are

very diverse in terms of the time of the day, weather, and

the length of the actual events.

5. GANs for Object Detection

We used CycleGAN [38] to transfer day images into the

night domain. The samples of real day image, real night im-

age, and GAN generated night image are shown in Figure 4.

We followed four crucial steps to generate high-resolution

imagery:

1. We apply transfer learning technique to fine-tune a pre-

trained GAN [23] with 1800 pairs of unlabeled day-

night images from our camera’s driving dataset. The

pre-trained model was trained on an unlabeled day and

night pairs from BDD [35], and Mapillary [24] dataset.

2. We trained with random crops of size 360 × 360 to

focus on local features instead of downsizing the whole

images.

3. During inference, we directly pass the full resolution

day images to the generator fully convolutionally to

get night images of the same resolution.

4. After training CycleGAN for 200 epochs with learning

rate 1e− 6 and decay factor 0.0002, we did a one-time

visual check to pick the best checkpoint.
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(a) Real Day Image (b) GAN Night Image (c) Real Night Image

Figure 4. Examples of (a) real day image, (b) corresponding CycleGAN generated night image, and (c) real night image.

We explored the performance of augmenting GAN

data in object detection tasks using the recently released

YOLOv5 [16] model. We did an ablation study of differ-

ent combinations of real data and GAN augmented data to

study the effects of GAN data in both the training and vali-

dation process. Stochastic gradient descent (SGD) was used

with the initial learning rate of 0.01 with decay factor 5e−4
and momentum 0.9. We also set class positive weight for

motorbikes to be 4 to prevent the models from being heav-

ily biased towards the majority classes of cars and big ve-

hicles. Batch sizes of 16 were formed for 640 × 640 in-

put resolution. The models were trained for 200 epochs,

and the checkpoints with the best performance on a held-

out validation set were used on the test set. Both Cycle-

GAN and YOLOv5 models were implemented in Pytorch

[25] and trained on a single Nvidia Titan X GPU.

5.1. Using GANs for Training

For all these experiments, the test set is balanced with

148 real day and 148 real night images. The training set

starts with 3511 instances of real day images only and a

varying amount of GAN generated night images or real

night images are added. The mean Average Precision

(mAP), both class-wise and overall, is reported separately

on the test day and test night images.

For the first experiment, we assume we have no instances

of the out-of-domain mode, i.e. night time, in our training

data. Figure 5 shows the advantage obtained by progres-

sively adding GAN generated night data. While the overall

performance on the night-time test set improves with an in-

creasing proportion of GAN night data in the training set,

the performance on day time test set more or less remains

stagnant. To analyze the statistical significance of results, in

each experiment, we trained five models from scratch using

the same settings of hyper-parameters. The mean and stan-

dard deviation of mAP values were shown in the bar plots.

Overall mAP improvement by adding an equal amount of

GAN night data to real day data was more than double, from

0.205 to 0.445, on night-time test data as compared to the

Table 1. mAP values calculated on real night test data for models

trained on same amount of real night and GAN night images

Training Data

Classes real day + real nighta real day + GAN nightb

Car 0.382 ± 0.010 0.344 ± 0.013

Big Vehicle 0.372 ± 0.038 0.308 ± 0.036

Motobike 0.384 ± 0.078 0.377 ± 0.064

All 0.379 ± 0.038 0.343 ± 0.028

Only three significant digits for mAP values are shown in the table.
a: 3511 real day images and 150 real night images
b: 3511 real day images and 150 GAN night images

model that was only trained with the real day images.

An intriguing question that we wanted to investigate is

how good of a substitute is GAN as compared to using ac-

tual real data from the concerned domain. Table 1 compares

the performance on night-time test set between adding 150

real night data versus adding an equal amount (150) of GAN

generated night data to the training data. For both cases, the

number of real training day images is 3511. The overall

mAP gain is in the same range for both cases. However,

one of the advantages of using GAN generated data is that

we can add multiple versions of nighttime images into the

training data and this leads to higher performance gain as

seen in Figure 5.

Although GANs showcase performance advantage when

used for data augmentation, there have been prior works

[15] showing that it may sometimes lead to unintended bias

into the dataset and training. GANs also suffer from mode

collapse and hence are not able to represent some of the

low probability regions of the distribution and also GAN

data usually have specific unwanted patterns [21] like asym-

metry, missing features, and semi-regular noise. In order

to remove any sort of GAN specific bias towards the night

domain, we propose a simple debiasing technique by gen-

erating GAN data across both in-distribution and out-of-

distribution domains. We took the training data with 3511
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Figure 5. The models are trained with combinations of 3511 real day images and varying amounts of GAN night images and real night

images. mAP values are calculated on the real day test set (top) and real night test set (bottom), respectively.

Table 2. Classwise and overall mAP values calculated on both real day test data and real night test data from models trained on different

combinations of real data and GAN data to explore bias issue.

Real Day Test Data Real Night Test Data

Training data Car Big Vehicle Motobike All Car Big Vehicle Motobike All

Real day + GAN nighta 0.865 0.605 0.459 0.643 0.431 0.468 0.434 0.445

GAN day + GAN nightb 0.875 0.600 0.507 0.660 0.445 0.470 0.350 0.422

Real day + GAN day + GAN nightc 0.877 0.624 0.463 0.655 0.436 0.472 0.445 0.450

All GAN night images are generated from real day images using generator A in CycleGAN. GAN day images are generated by transforming real day images

to GAN night images(generator A) to GAN day images(generator B) using CycleGAN.
a: 3511 real day images and 3511 GAN night images.
b: 3511 GAN day images and 3511 GAN night images.
c: 3511 real day images and 3511 GAN night images and 3511 GAN day images.

175



real day images and 3511 GAN night images as the baseline

and compared it with two training sets (a) adding GAN day

images to real day and GAN night, and (b) training only

with GAN day and GAN night without any real data. As

can be seen in Table 2, adding GAN data in the dominant

in-distribution mode acts as a debiaser by asking the object

detector not to focus on unwanted patterns and thus leads to

better performance both on test day and night datasets.

5.2. Using GANs for Testing

A relatively less explored area of research is the safety

and reliability of using GANs to evaluate models before

deployment. This is similar to how simulators are em-

ployed to perform offline closed-loop and open-loop testing

for perception and can thus be instrumental in capturing

problems before the autonomous system hits the roads. For

example, if we can conclude with high confidence that the

self-driving software is unable to detect GAN-generated

Halloween costumed pedestrians and the same conclusion

also holds on real life pedestrians with such costumes, then

it would be indeed a life-saving way of doing function

validation. For this set of experiments, we either use the

149 real night images in the test set or translate the 149

real day images in the test set to create 149 GAN night

images for testing. We use these two test sets to evaluate

a YOLOv5 model which was trained using the real day

images only. The results in Table 3 demonstrate that

although overall mAP values remain in the same range,

class-wise average precision varies a lot. We believe that

this can be attributed to the difference in object distribution

between the real day (and hence GAN night) and real

night images in the test data. A similar problem is not that

prominent during training since we go through the images

iteratively in batches and epochs during the entire training

process.

However, a qualitative eye test manifests similar pat-

terns. Figure 6 shows how we can automatically figure out

situations that can lead to potentially adverse results without

really having to go for real data. The YOLOv5 trained with

real day images is not supposed to behave well in the night

domain. One such adverse pattern is that a truck either not

being properly detected or only its lower half being partially

detected as cars in the night domain. This is probably due

to the fact that only the lower part of such bigger vehicles

are illuminated by the front lights of the ego vehicle. Such

disproportionate illuminance might be confusing the object

detector to have poor performance in out-of-domain night

time situations.

5.3. Using Perception Loss for Data Generation

The experiments so far have treated the data generator

and actual downstream task in a decoupled manner. While

Figure 6. Predictions of bounding boxes for big vehicles from

YOLOv5 model that was that was trained on real day images only,

and tested on real night image (top) and GAN night image (bot-

tom). In both cases, similar error patterns (lower half of truck is

detected as cars) are observed.

Table 3. Object statics and mAP values on real night test data and

GAN night test data.

Number of Objects mAP Values

Classes Real night GAN night Real night GAN night

Car 2055 996 0.189 ± 0.033 0.392 ± 0.052

Big Vehicle 227 180 0.132 ± 0.040 0.051 ± 0.010

Motobike 12 21 0.294 ± 0.058 0.119 ± 0.038

All 2294 1197 0.205 ± 0.021 0.188 ± 0.026

the GANs can notably create visually indistinguishable im-

agery, the real usage of these data samples, of course, de-

pends on the amount of value it adds to the subsequent

learning process. In this experiment, we look for possi-

ble ways to combine the perception task of object detection

in the GAN training process too in the hope of generating

better applicable data samples even for out-of-distribution

modes. While some previous literature has followed on the

lines of adding auxiliary or perceptual losses on both do-

mains, we cannot use the same since we assume that the

target domain to be generated is a rare mode, and hence we

neither have data or any trained models to work on it.

We start with the initial zero-shot situation where we

assume we have no labeled data in the night domain. We
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Figure 7. Frames from a real world video clip (1st row); simu-

lated mask (2nd row) where gray, purple, and blue colors indicate

road surface, vehicles, and others respectively; and GAN gener-

ated frames (3rd row) by manipulating the segmentation masks

with the corresponding simulated masks.

only have 3511 real day images labeled with object detec-

tion bounding boxes. The pretrained CycleGAN was fine-

tuned with 1800 unlabeled pairs of day and night images

captured from the ego vehicle’s raw driving data. The orig-

inal CycleGAN comprises of two GAN style adversarial

losses and two cycle consistency losses for both directions

day −→ night −→ day and night −→ day −→ night each. In

order to promote detection in low visibility situations like

night time on highways, we rephrase the cycle consistency

loss by putting more emphasis on using pixel-wise weights

based on the presence and absence of foreground objects

like vehicles in the images. As per Figure 3, the new cycle

consistency loss for day image X is

LDay2Night
cyc =

∑

n

∑

i,j

wi,j ||Xi,j − F (G(X))i,j ||1, (1)

where wi,j = 1 if it’s a background pixel and 10 for fore-

ground objects of interest like cars, motorbikes, and bigger

vehicles. We experimented with various weights and went

for this uneven scheme as it promoted the performance of

generating better imagery for the less popular class modes.

Since the YOLOv5 was trained on real day images only, it

is expected to perform well on daytime domain only and

not on night images. Thus, the trained YOLOv5 was used

to generate pseudo-labels for the daytime 1800 images used

for CycleGAN training. And the cycle consistency revision

was only applied one way, i.e on day −→ night −→ day.

Although the cycle consistency loss is only applied on the

reconstructed day images, it is intended to force both the

generators F and G implicitly to put further attention on the

foreground region containing vehicles. Table 4 shows that

this led to a marginal increase in the overall performance on

the real night test set.

Table 4. mAP values on real night test data reported by original

CycleGAN and proposed CycleGAN with weighted consistency

loss.

Models Overall mAP

Original CycleGAN 0.445

Proposed CycleGAN 0.455

6. GANs for Scenario Classification

The application of GANs for modifying objects is rel-

atively unexplored at the video level due to the difficulty

of applying motion-related changes in it. Works like

Pix2PixHD and Vid2Vid [32] generate color images and

videos, respectively, using segmentation maps, but they do

not specifically address the generation of rare or corner

cases. Automatic video manipulation to create long-tail

situations can be crucial in application areas such as au-

tonomous driving. In this section, we present a novel ap-

proach to detect a rare scenario, specifically the sharp cut-in

of a vehicle by hastily changing lanes into the ego lane in

front of the ego vehicle. These can often lead to dangerous

and unsafe situations since sharp cut-ins quickly reduce the

safety gap between the ego vehicle and are often difficult

to predict. We assume a complete zero-shot setting, which

means there is no real-world training data available at all for

the sharp cut-in scenario.

6.1. Modules

We train DeepLabv3 [4] model for semantic segmenta-

tion and Mask-R-CNN [10] for instance identification using

the instance-level semantic segmentation annotations that

we have for the 3959 images as mentioned in the previous

section. We then apply the trained models to obtain seg-

mentation masks for the remaining frames in the training

videos.

Modifying the segmentation maps of videos is not a

trivial task as careful attention must be paid to the ori-

entation and perspective of cutting in vehicles. We thus

leverage Unity3D game engine to manipulate segmentation

maps. We use the calibration parameters of the real cam-

era to mount a similar virtual camera in the simulation. Our

dataset also contains standard maps and data from the ve-

hicle bus like GPS location, acceleration, yaw, etc. We use

this information to design roads and ego vehicle motion in

the simulator. Assets of different types of vehicles are ob-

tained from Unity Store and used to generate a sharp cut

in behavior. Then, only the mask of the cutting-in vehi-

cle, shown in purple in Figure 7, is overlaid onto the corre-

sponding segmentation labels of real frames. We then use

Pix2PixHD, which was also trained using the same 3959
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DeepLabV3

MaskRCNN

Real Video Frames 

Vehicle Motion in Unity3D 

GAN Image 

Generator

GAN Sharp Cut-in

GAN Normal Drive

Real Normal Drive

…

CNN

CNN

CNN

LSTM

LSTM

LSTM

FC

… …

Sharp Cut-in

Normal Drive

Figure 8. The architecture of sharp cut-in data generator and detector: Given a limited number of frames annotated, we train DeeplabV3

and MaskRCNN to obtain annotation for all frames and then we use Unity3D to insert moving vehicles into the masks. Afterward using

Pix2PixHD trained on our data, we generate new clips for the intended scenarios. Lastly, we train a CNN+LSTM classifier using the real

and generated data to classify the sharp cut-in vs normal driving on real videos.

image and segmentation mask pairs, to generate the realis-

tic video frames for the intended cut-in event. Following

the conclusion obtained from the GAN bias experiments in

the previous section, we also end up generating both sharp

cut-in and normal video clips using GANs, as depicted in

Figure 8.

To perform video action classification while maintaining

a low computational cost, we use the popular CNN+ LSTM

model that applies the LSTM on the features obtained from

applying a convolutional network on a sequence of video

frames. We used the ImageNET [5] pretrained ResNet-152

weights as our CNN base to achieve visual features form

video frames. We obtain a 512 dimensional feature vector

for each frame and feed these features to a recurrent model

that comprises 2 LSTM layers followed by a fully con-

nected layer for binary classification. Although our video

clips are 60 or 90 frames, our input sequence to the model

is 30 frames. Thus we can get multiple data samples during

batch training by randomly selecting the start and the end

of videos to pick a 30 frame sequence.

6.2. Results for Scenario Classification

For each test video clip, the inference is performed by

applying the model on its overlapping subsequences, and

the decision is made by temporal averaging. We apply two

different approaches to generate the sharp cut-in GAN data

in the training set. In the first one, we generate the whole

image sequence using pix2pixHD, and crop the pixels be-

longing to the cut-in vehicle only and paste that onto the

corresponding frames belonging to the real normal data.

In the second approach, we use the whole GAN generated

frames as it is to create our training data. As reported in

Table 5, using the whole generated images leads to better

results. We believe this is because the homogeneity of the

images in whole generated versions directs the network to

correctly attend to motion changes rather than unnecessarily

focusing on color or gradient change in cut-and-paste data.

Table 5. Results on zero shot detection of GAN generated cut ins

using CNN and LSTM.

Method Accuracy Precision Recall

Masks Pasted 0.56 0.6 0.35

Whole Generated 0.76 0.88 0.66

7. Conclusion

In this paper, we empirically study whether one can rely

on GANs to generate data for training and evaluating vision-

based perception modules. We solely focus on simulat-

ing data for out-of-training-distribution or long tail situa-

tions only. With our experiments on domain translation, we

demonstrated how including GAN generated night data can

substantially increase the performance of downstream ob-

ject detection models on actual night time test sets. We also

uncovered and suggested mitigation techniques for the bias

introduced during GAN included training. Although results

were inconclusive on whether one can quantitatively vali-

date perception models by testing using GAN data only, we

showed interesting detection patterns that also occur when

tested with real data. We also proposed a novel loss func-

tion that helped CycleGAN to put focus on targeting the

improvement of downstream object detection module. We

also showed how GANs can be used to simulate rare traf-

fic scenarios like sharp cut-ins and how action classification

neural networks can then be trained, in the absence of any

real world sharp cut-in training data, to detect such events

in the real world.
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