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1. Implementation details

The segmentation network is optimized with Stochastic
Gradient Descent (SGD) optimizer (with Nesterov acceler-
ation), where the weight decay is 1e-4 and the momentum is
0.9. The initial learning rate is set at 2.5e-4 and is decreased
with a polynomial decay of 0.9. To train the discriminator,
we use the Adam optimizer with a learning rate of 10e-4.
The polynomial decay is the same as that of the segmenta-
tion network. All our experiments are performed on a single
NVIDIA GEForce 11 GB GPU, with a batch size of 2.

2. Quantitative results: Ablation studies

Table 1 shows class-wise performance for the ablation
experiments conducted on the various distillation losses
proposed. The ablation corresponds to the source distil-
lation paradigm (paradigm a in the distillation paradigms
figure), and the experiments have been conducted on the
real-to-real case. To deduce the performance of the individ-
ual distillation loss functions, we conduct extensive abla-
tion studies on the real-to-real adaptation case. We conduct
these studies on distillation paradigm case (a). The rationale
is that these results should scale for the other three cases as
well.

2.0.1 Impact of various loss functions:

The impact of various loss functions has been discussed in
the paper.

Class-wise performance: As with most segmentation
models, we notice that our domain-adaptive distilled model
performs particularly well on classes such as road, car, veg-
etation, sky, etc. which have a huge presence in the dataset.
Rare classes such as trains have a high probability of being
confused with bus; truck and bus can be confusing to dif-
ferentiate - these can in fact be wrongly classified as cars;
wall and fence can be ambiguous and so on. We also notice
that detection of small objects like traffic signs and persons
in some images gets missed out. This can be attributed to

multiple reasons - size of the object, rare occurrence and
nuanced boundaries. While our proposed model outper-
forms both the teacher and the student in most categories,
the trends of these models across categories are very similar.
Thus, we believe that these issues are innate to the baseline
domain adaptation and segmentation models.

3. Qualitative Results

In this section, we present visual results for our proposed
pipeline ’domain-adaptive distillation’. The evaluation is
done on the target domain of the student network. The
nomenclature is as follows:

* Image: Target domain input image on which evalua-
tion is done

e GT: Corresponding ground truth

 Teacher: Teacher network output for the target domain
image

 Student: Student network output for the target domain
image

* Source distillation (a): Output of student network dis-
tilled as per distillation paradigm (a) (Source domain
distillation), evaluated on the target domain image (All
distillations are as per Fig. 2 in the paper)

* Target distillation (b): Output of student network dis-
tilled as per distillation paradigm (b) (Target domain
distillation), evaluated on the target domain image

* Source + target distillation (c): Output of student net-
work distilled as per distillation paradigm (c) (Source
+ target domain distillation), evaluated on the target
domain image

 Target init distillation (d): Output of student network
distilled as per distillation paradigm (d) (Target do-
main distillation, initialised with case (c)), evaluated
on the target domain image



Table 1: Ablation studies: Impact of various distillation losses for source distillation on the real-to-real case.
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(i) KL divergence (Lx1)
0.1 39.54 90.08 50.58 78.99 16.41 20.71 2443 19.44 3511 80.65 28.63 73.07 47 1535 7832 23.19 33.17 045 798 27778 86.65
0.4 40.27 90.63 51.2 79.53 18.11 21.67 2496 20.75 3554 81.29 29.08 74.86 47.71 14.81 79.65 2394 3439 046 832 2828 87.15
0.7 40.0 90.09 5044 7896 18.74 2131 2397 20.19 3548 8129 296 742 4697 1483 78.68 2323 3397 15 761 29.03 868l
1.0 3894 8943 5027 7839 17.1 2035 2359 1823 3428 8045 2848 7135 4652 1466 7728 2106 3246 093 621 2889 86.18
(ii)) MSE loss (Lrsk)
0.005 3891 89.61 50.04 7839 1755 204 2299 17.63 3396 80.45 2854 7188 46.14 1428 7773 2086 3283 1.01 691 28.04 86.25
0.05 3871 89.94 5056 7855 1634 208 21.38 1739 3377 80.18 28.66 7273 4598 1206 7851 2137 3348 1.16 545 2727 8644
0.01 39.86 9092 50.78 79.45 1959 21.23 2355 1882 3634 81.06 29.12 7531 47.05 125 7999 2305 3307 0.86 748 2721 8717
(iii) Cross entropy quasi teacher labels (Lcp—quasiT)
0.001 40.15 90.43 51.19 7945 17.11 2158 2447 1981 3536 8125 29.63 74.67 47.68 1398 7937 248 3419 06 877 2834 87.05
0.01 40.6  90.81 52.09 79.75 1697 22.64 2568 209 3554 81.07 29.14 7445 4848 17.58 80.1 24.17 3336 0.66 10.22 27.79 87.22
0.05 4072 91.17 51.15 79.65 1825 225 2554 2142 3581 81.58 30.55 75.66 48.05 15.54 80.05 24.28 3446 044 899 2857 874
0.1 41.01 9148 5191 7982 1832 2275 2586 2154 3569 81.7 3047 7621 4768 163 8028 25.17 3493 049 9.14 2939 8759
0.5 4145 9198 52.62 80 18.58 23.55 2572 21.67 3644 8229 3284 7698 47.8 1487 81.08 2576 3633 0.29 8.6 30.2 8798
1.0 4218 9227 5557 8026 192 246 2566 2198 3603 8288 3475 7752 4842 17772 8206 2457 3729 0.14 932 312 8828
(iv) Combination of the loss terms KL, MSE (Lx .+Larse)
0.4,0.01 39.89 90.83 50.88 79.42 17.11 21.29 2466 202 3478 81.03 30.08 7475 4723 143 7985 23.15 3226 039 803 27.65 87.15
0.1, 0.01 40.32 91.04 51.11 79.82 1735 21.55 2557 20.58 3446 8126 2992 7567 47.59 1576 80.55 24.04 3379 0.3 8.63 27.1 8137
0.7,0.05 39.7  91.04 5092 7937 1683 2124 24.19 20.51 3392 80.8 3043 75.02 4648 13.71 80.13 2273 3151 056 7.17 2776 87.17
(v)Combination of the loss terms KL, CE-quasiT (Lx 1, + Lop—quasiT)
0.1,0.1 41.18 9213 52.6 80.18 18.8 22.89 2628 22.18 3535 81.85 32.11 77.04 48 15.02 81.54 2538 3385 03 753 294 8798
0.1,1 4192 924 538 8044 18.62 2452 2561 2217 3695 8263 3345 78.14 48.18 1492 8172 26.63 359 0.09 895 3143 883
(vi) Combination of the loss terms MSE, CE-quasiT (Lyrsg + Lop—quasiT)
0.01,1 422 92,62 54.64 80.71 18.19 23.17 26.04 22.63 3532 8298 3449 7813 4835 16.19 8293 27.17 3728 0.04 872 32.17 8854
(vii)Combination (L1, + Lyvse + Lop—quasiT); Ak =0.1, Avse = 0.01, A\op—quasit = 1.0
Case (a) 4233 9241 5391 8057 193 2289 2688 23.03 36.05 8259 3467 7742 4839 1539 82.8 2757 4004 0.03 922 31.12 8842
3.1. BDD to cityscapes

This section has visual results for the real-to-real adap-
tation case: Berkeley Deep Drive to Cityscapes. (Fig. 1)

3.2. GTAS to cityscapes

This section has visual results for the synthetic-to-real
adaptation case: GTAS to Cityscapes. (Fig. 2)
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Figure 1: Visual results: BDD to Cityscapes
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Figure 2: Visual results: GTAS to Cityscapes



